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Introduction
● Static Analysis:  Method of reasoning (verifying, debugging .. ) about computer 

programs without explicitly executing them.

● Abstract Interpretation:  A static-analysis framework that guarantees that the 

information gathered about a program is a safe approximation to the program's 

semantics.

● Basic Idea: Approximate the program's behavior by using an abstract domain, 

which is a simplified representation of the values that the program can 

manipulate.
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2

)

{o
1

 -> [0.6, 1.4]}              ([0.1 + 0 + 0.5,  0.7 + 0.2 + 0.5])

{o
2

 -> [-1, 0.4]}              (-h2 -> [-0.2, 0]   and  then o2 -> [2*0.1 - 0.2 - 1,  2*0.7 + 0  - 1])



Example analysis
● Had to prove that if i

1  
ranges from [0, 0.3] and i

2
 ranges from [0.1, 0.4], then o

2
 ≥ -1

● Have proved that: o
1

 -> [0.6, 1.4] and o
2

 -> [-1, 0.4]. This helps us to prove that:

○ o
2

 ≥ -1
○ Other similar properties : o

1
 ≥ 0.6

○ More complex properties : o
1

 > o
2

● Maintaining intervals for variables enabled us to reason about all possible program states together.

● This was possible by interpreting the program states in another abstract domain (intervals here).
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Abstract Domains

● Abstract Domains (A): Domain of values that are used to keep track of the program 

states (the concrete domain C) succinctly.

● Some examples: Interval, Zonotopes, Octagon, Polyhedra

ABSTRACT INTERPRETATION



Abstraction Function 
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Concretization Function
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Galois Connection
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Introduction

ABSTRACT TRANSFORMERS

● Consider the + operation and the code line z = x + y. 

● When interpreting the program on interval domain:

If x# = [a, b] and y# = [c, d], then we need a operator +#  that gives us  z#

z# = x# +# y# = [a, b]  +#  [c, d] = [a+b,  c+d]

● We call +#  the abstract transformer for +

● We need abstract transformers for all operations in the language. 



Soundness

ABSTRACT TRANSFORMERS

● Necessary condition for transformer correctness.

● We define the best transformer F
best

#(z) as:
○ Concretize the z to get the set of concrete 

values mapped to it
○ Apply F to all those concrete values to get a set 

C’ (= F(x)) of concrete values
○ Get the abstract values for the set C’

● Any transformer F#(z) is sound if it over-approximates 
F

best
#(z) (includes all abstract values computed by the 

best transformer)

● If [a, b] +# [c,d] = [e, f],  then +# is sound if:

∀ x ∈ [a,  b] , ∀ y ∈ [c,  d]   =>  x + y ∈ [e,  f]
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Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider  [a, b] +# [c,d] = [e, f],  +# is sound if ∀ x ∈ [a,  b] , ∀ y ∈ [c,  d]   =>  x + y ∈ [e,  f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞]  YES NO

[a + c - 5, b + d + 6] YES NO

[a + c + 1, b + d] NO <don’t care>

[a + c, b + d] YES YES



Motivation

  AMURTH

● Abstract transformers are often non-trivial even for a simple operation.

E.g.: The most precise transformer for abs(x) in the interval domain is:

● Manually written abstract transformers error-prone (unsound) and can be imprecise.

● AMURTH  found multiple bugs in abstract transformers in the existing abstract 

interpretation engines.

AMURTH can synthesize non-trivial transformers in reasonable time (< 2000 seconds).
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Rel. b/w Domains (α, γ)

DSL for Possible Transformers (L)
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( L-Transformer: Expressible in L)
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Soundness (or +ve) Counterexamples

  AMURTH

● AMURTH works by guessing potential transformers from the DSL.

● These guesses are then corrected/guided by counterexamples.

For the abs(x) case,  say AMURTH guesses the transformer:  abs#([l, r]) = [0, l+r]

Consider [-2, 2]:

-  abs#[-2,2] should capture all values between [0,2]

-  But abs#[-2,2] computes to [0, 0] (is missing the concrete value 2)

- <[-2, 2], 2> is a soundness counterexample

General form: <a, c′> such that  a ∈ A   and  c′ ∈ γ(F
best

#(a))  but  c′ ∉  γ(F#(a))
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● What if we only use Soundness counterexamples to refine our guesses?

Are there some drawbacks?



Soundness (or +ve) Counterexamples

  AMURTH

● What if we only use Soundness counterexamples to refine our guesses?

Are there some drawbacks?

Ans:   YES! If we only use Soundness counterexamples, nothing is stopping the tool to synthesize 
              [-∞, ∞]  everytime.  

Reason: There are no preciseness constraints! 



Precision (-ve) Counterexamples

  AMURTH

For the abs(x) case,  say AMURTH guesses the transformer:  abs#([l, r]) = [0, l+r]

Consider [2, 4]:

-  abs#[2, 4] should capture all values between [2, 4]

-  But abs#[2, 4] computes to [0, 6] (has many redundant values, lets pick 5)

- <[2, 4],  5> is a precision counterexample

General form: ⟨a, c′⟩ such that  a ∈ A  and  ∃ F
L-best

#(a)  such that  c′ ∉  γ(F
L-best

#(a))



Algorithm Overview

  AMURTH

● Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy

● Attempts to meet the dual objectives of soundness and precision

● Counterexamples generated by soundness and precision verifiers drive two CEGIS loops.
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This stops when there are no more soundness and precision counterexamples.



Theorems for Correctness 
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Results & Conclusion

  AMURTH

● The transformers generated by AMURTH were as effective as the manually written ones.

●  When transformers generated by AMURTH were compared to the existing ones, the authors 
found 4 soundness bugs in the present transformers.

● This shows the current manual techniques can be error-prone, imprecise and sound.

● Using a tool like AMURTH can let you generate abstract transformers which are provably sound 
and precise.
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Existing Soundness Bugs





Backup Slides



Here, though the approximation we generated has some 
intersection with error state, we cannot (should not) conclude 
that we have errors as we over-approximate

  ABSTRACT INTERPRETATION

Over-approximation Caveat



Approximating Precision

  AMURTH

● The current set of examples 𝐸  is used to approximate 𝑓
L
♯

● A most-precise 𝐿-transformer that satisfies 𝐸 (denoted by 𝑓𝐸
♯) is 

optimistically assumed to be 𝑓
L
♯
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