
-SYNTHESIZING ABSTRACT TRANSFORMERS -

Presentor: Shaurya Gomber (1st yr MS CS, UIUC)

OOPSLA ‘22

Topics

1. What is Abstract Interpretation?

2. What are Abstract Transformers?

3. Soundness and Precision of Abstract Transformers

4. AMURTH: The Abstract Transformer Synthesizer

a. High level idea

b. Working

c. Results

Introduction
● Static Analysis: Method of reasoning (verifying, debugging ..) about computer

programs without explicitly executing them.

● Abstract Interpretation: A static-analysis framework that guarantees that the

information gathered about a program is a safe approximation to the program's

semantics.

● Basic Idea: Approximate the program's behavior by using an abstract domain,

which is a simplified representation of the values that the program can

manipulate.

ABSTRACT INTERPRETATION

Example

ABSTRACT INTERPRETATION

i
1

i
2

h
1

h
2 o

2

o
1

1
1

1

-1

1

1

2

ReLU

Prove that if i
1

ranges from [0, 0.3] and i
2

 ranges from [0.1, 0.4], then o
2

 ≥ -1

ReLU

Bias: 0.5

Bias: -1

Example
 Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

ABSTRACT INTERPRETATION

Example
 Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

ABSTRACT INTERPRETATION

{i
1

 -> [0, 0.3], i
2

 -> [0.1, 0.4]} (Given)

Example
 Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

ABSTRACT INTERPRETATION

{i
1

 -> [0, 0.3], i
2

 -> [0.1, 0.4]} (Given)

{h
1

-> [0.1, 0.7]} (To add intervals, add the lower bounds and upper bounds)

Example
 Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

ABSTRACT INTERPRETATION

{i
1

 -> [0, 0.3], i
2

 -> [0.1, 0.4]} (Given)

{h
1

-> [0.1, 0.7]} (To add intervals, add the lower bounds and upper bounds)

{h
2

 -> [-0.4, 0.2]} (-i
2

 -> [-0.4, -0.1] and i
1

 - i
2

 = i
1

 + (-i
2

))

Example
 Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

ABSTRACT INTERPRETATION

{i
1

 -> [0, 0.3], i
2

 -> [0.1, 0.4]} (Given)

{h
1

 -> [0.1, 0.7]} (To add intervals, add the lower bounds and upper bounds)

{h
2

 -> [-0.4, 0.2]} (-i
2

 -> [-0.4, -0.1] and i
1

 - i
2

 = i
1

 + (-i
2

))

{h
1

 -> [0.1, 0.7]} (Max has no effect on h
1

 as it is already more than 0)

Example
 Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

ABSTRACT INTERPRETATION

{i
1

 -> [0, 0.3], i
2

 -> [0.1, 0.4]} (Given)

{h
1

 -> [0.1, 0.7]} (To add intervals, add the lower bounds and upper bounds)

{h
2

 -> [-0.4, 0.2]} (-i
2

 -> [-0.4, -0.1] and i
1

 - i
2

 = i
1

 + (-i
2

))

{h
1

 -> [0.1, 0.7]} (Max has no effect on h
1

 as it is already more than 0)

{h
2

 -> [0, 0.2]} (Max prunes the negative part from h
2

)

Example
 Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

ABSTRACT INTERPRETATION

{i
1

 -> [0, 0.3], i
2

 -> [0.1, 0.4]} (Given)

{h
1

 -> [0.1, 0.7]} (To add intervals, add the lower bounds and upper bounds)

{h
2

 -> [-0.4, 0.2]} (-i
2

 -> [-0.4, -0.1] and i
1

 - i
2

 = i
1

 + (-i
2

))

{h
1

 -> [0.1, 0.7]} (Max has no effect on h
1

 as it is already more than 0)

{h
2

 -> [0, 0.2]} (Max prunes the negative part from h
2

)

{o
1

 -> [0.6, 1.4]} ([0.1 + 0 + 0.5, 0.7 + 0.2 + 0.5])

Example
 Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

ABSTRACT INTERPRETATION

{i
1

 -> [0, 0.3], i
2

 -> [0.1, 0.4]} (Given)

{h
1

 -> [0.1, 0.7]} (To add intervals, add the lower bounds and upper bounds)

{h
2

 -> [-0.4, 0.2]} (-i
2

 -> [-0.4, -0.1] and i
1

 - i
2

 = i
1

 + (-i
2

))

{h
1

 -> [0.1, 0.7]} (Max has no effect on h
1

 as it is already more than 0)

{h
2

 -> [0, 0.2]} (Max prunes the negative part from h
2

)

{o
1

 -> [0.6, 1.4]} ([0.1 + 0 + 0.5, 0.7 + 0.2 + 0.5])

{o
2

 -> [-1, 0.4]} (-h2 -> [-0.2, 0] and then o2 -> [2*0.1 - 0.2 - 1, 2*0.7 + 0 - 1])

Example analysis
● Had to prove that if i

1
ranges from [0, 0.3] and i

2
 ranges from [0.1, 0.4], then o

2
 ≥ -1

● Have proved that: o
1

 -> [0.6, 1.4] and o
2

 -> [-1, 0.4]. This helps us to prove that:

○ o
2

 ≥ -1
○ Other similar properties : o

1
 ≥ 0.6

○ More complex properties : o
1

 > o
2

● Maintaining intervals for variables enabled us to reason about all possible program states together.

● This was possible by interpreting the program states in another abstract domain (intervals here).

ABSTRACT INTERPRETATION

Abstract Domains

● Abstract Domains (A): Domain of values that are used to keep track of the program

states (the concrete domain C) succinctly.

● Some examples: Interval, Zonotopes, Octagon, Polyhedra

ABSTRACT INTERPRETATION

Abstraction Function

ABSTRACT INTERPRETATION

Concretization Function

ABSTRACT INTERPRETATION

Galois Connection

ABSTRACT INTERPRETATION

Introduction

ABSTRACT TRANSFORMERS

● Consider the + operation and the code line z = x + y.

● When interpreting the program on interval domain:

If x# = [a, b] and y# = [c, d], then we need a operator +# that gives us z#

z# = x# +# y# = [a, b] +# [c, d] = [a+b, c+d]

● We call +# the abstract transformer for +

● We need abstract transformers for all operations in the language.

Soundness

ABSTRACT TRANSFORMERS

● Necessary condition for transformer correctness.

● We define the best transformer F
best

#(z) as:
○ Concretize the z to get the set of concrete

values mapped to it
○ Apply F to all those concrete values to get a set

C’ (= F(x)) of concrete values
○ Get the abstract values for the set C’

● Any transformer F#(z) is sound if it over-approximates
F

best
#(z) (includes all abstract values computed by the

best transformer)

● If [a, b] +# [c,d] = [e, f], then +# is sound if:

∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞]

[a + c - 5, b + d + 6]

[a + c + 1, b + d]

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES

[a + c - 5, b + d + 6]

[a + c + 1, b + d]

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES NO

[a + c - 5, b + d + 6]

[a + c + 1, b + d]

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES NO

[a + c - 5, b + d + 6] YES

[a + c + 1, b + d]

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES NO

[a + c - 5, b + d + 6] YES NO

[a + c + 1, b + d]

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES NO

[a + c - 5, b + d + 6] YES NO

[a + c + 1, b + d] NO <don’t care>

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES NO

[a + c - 5, b + d + 6] YES NO

[a + c + 1, b + d] NO <don’t care>

[a + c, b + d] YES YES

Motivation

 AMURTH

● Abstract transformers are often non-trivial even for a simple operation.

E.g.: The most precise transformer for abs(x) in the interval domain is:

● Manually written abstract transformers error-prone (unsound) and can be imprecise.

● AMURTH found multiple bugs in abstract transformers in the existing abstract

interpretation engines.

AMURTH can synthesize non-trivial transformers in reasonable time (< 2000 seconds).

High Level Diagram

 AMURTH

 A

 M

 R

 U

 T

 H

Concrete Domain (Integers)

Abstract Domain (Interval)

Concrete Transformer (F)

Rel. b/w Domains (α, γ)

DSL for Possible Transformers (L)

Best L-Transformer for F

High Level Diagram

 AMURTH

 A

 M

 R

 U

 T

 H

Concrete Domain (Integers)

Abstract Domain (Interval)

Concrete Transformer (F)

Rel. b/w Domains (α, γ)

DSL for Possible Transformers (L)

Best L-Transformer for F

(L-Transformer: Expressible in L)

High Level Diagram

 AMURTH

 A

 M

 R

 U

 T

 H

Concrete Domain (Integers)

Abstract Domain (Interval)

Concrete Transformer (F)

Rel. b/w Domains (α, γ)

DSL for Possible Transformers (L)

Best L-Transformer for F

(L-Transformer: Expressible in L)

(Best:
- Sound
- Most precise among other

sound options expressible in L)

Soundness (or +ve) Counterexamples

 AMURTH

● AMURTH works by guessing potential transformers from the DSL.

● These guesses are then corrected/guided by counterexamples.

For the abs(x) case, say AMURTH guesses the transformer: abs#([l, r]) = [0, l+r]

Consider [-2, 2]:

- abs#[-2,2] should capture all values between [0,2]

- But abs#[-2,2] computes to [0, 0] (is missing the concrete value 2)

- <[-2, 2], 2> is a soundness counterexample

General form: <a, c′> such that a ∈ A and c′ ∈ γ(F
best

#(a)) but c′ ∉ γ(F#(a))

Soundness (or +ve) Counterexamples

 AMURTH

● What if we only use Soundness counterexamples to refine our guesses?

Are there some drawbacks?

Soundness (or +ve) Counterexamples

 AMURTH

● What if we only use Soundness counterexamples to refine our guesses?

Are there some drawbacks?

Ans: YES! If we only use Soundness counterexamples, nothing is stopping the tool to synthesize
 [-∞, ∞] everytime.

Reason: There are no preciseness constraints!

Precision (-ve) Counterexamples

 AMURTH

For the abs(x) case, say AMURTH guesses the transformer: abs#([l, r]) = [0, l+r]

Consider [2, 4]:

- abs#[2, 4] should capture all values between [2, 4]

- But abs#[2, 4] computes to [0, 6] (has many redundant values, lets pick 5)

- <[2, 4], 5> is a precision counterexample

General form: ⟨a, c′⟩ such that a ∈ A and ∃ F
L-best

#(a) such that c′ ∉ γ(F
L-best

#(a))

Algorithm Overview

 AMURTH

● Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy

● Attempts to meet the dual objectives of soundness and precision

● Counterexamples generated by soundness and precision verifiers drive two CEGIS loops.

Algorithm Overview

 AMURTH

In Action

 AMURTH

In Action

 AMURTH

This stops when there are no more soundness and precision counterexamples.

Theorems for Correctness

 AMURTH

Evaluation

 AMURTH

Results

 AMURTH

Time taken to synthesize the transformers (in secs)

Results

 AMURTH

Results & Conclusion

 AMURTH

● The transformers generated by AMURTH were as effective as the manually written ones.

● When transformers generated by AMURTH were compared to the existing ones, the authors
found 4 soundness bugs in the present transformers.

● This shows the current manual techniques can be error-prone, imprecise and sound.

● Using a tool like AMURTH can let you generate abstract transformers which are provably sound
and precise.

 AMURTH

Existing Soundness Bugs

 AMURTH

Existing Soundness Bugs

Backup Slides

Here, though the approximation we generated has some
intersection with error state, we cannot (should not) conclude
that we have errors as we over-approximate

 ABSTRACT INTERPRETATION

Over-approximation Caveat

Approximating Precision

 AMURTH

● The current set of examples 𝐸 is used to approximate 𝑓
L
♯

● A most-precise 𝐿-transformer that satisfies 𝐸 (denoted by 𝑓𝐸
♯) is

optimistically assumed to be 𝑓
L
♯

Failed Consistency

 AMURTH

Failed Consistency

 AMURTH

Failed Consistency

 AMURTH

Failed Consistency

 AMURTH

Failed Consistency

 AMURTH

Failed Consistency

 AMURTH

Failed Consistency

 AMURTH

Complete Algorithm

 AMURTH

