SYNTHESIZING ABSTRACT TRANSFORMERS
OOPSLA ‘22

PANKAJ KUMAR KALITA, Indian Institute of Technology Kanpur, India
SUJIT KUMAR MUDULLI, Indian Institute of Technology Kanpur, India
LORIS D’ANTONI, University of Wisconsin-Madison, USA

THOMAS REPS, University of Wisconsin-Madison, USA

SUBHAJIT ROY, Indian Institute of Technology Kanpur, India

Presentor: Shaurya Gomber (15t yr MS CS, UIUC)

Topics

What is Abstract Interpretation?
What are Abstract Transformers?
Soundness and Precision of Abstract Transformers

AMURTH: The Abstract Transformer Synthesizer

L0 PE

a. Highlevelidea
b. Working

c. Results

ABSTRACT INTERPRETATION

Introduction

e Static Analysis: Method of reasoning (verifying, debugging ..) about computer

programs without explicitly executing them.

e Abstract Interpretation: A static-analysis framework that guarantees that the

information gathered about a program is a safe approximation to the program's

semantics.

e Basicldea: Approximate the program's behavior by using an abstract domain,
which is a simplified representation of the values that the program can

manipulate.

ABSTRACT INTERPRETATION

Example

ReLU Bias: 0.5

def f(il, i2):

hl = i1 + i2
h2 = i1 - i2
hl = max(@, h1) Prove thatifi, ranges from [0, 0.3]and i, ranges from [0.1, 0.4], theno, = -1

h2 = max(0, h2)

0l = hl + h2 + 0.5

02 = 2xhl - h2 - 1

return ol, o2

ABSTRACT INTERPRETATION

Example

Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

def f(il1, i2):

hl = i1 + i2
h2 = i1 - i2
hl = max(@, hl)
h2 = max(@, h2)

0l =hl + h2 + 0.5

02 2xhl - h2 - 1

return ol, o2

ABSTRACT INTERPRETATION

Example

Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

def f(il1, i2):

{i,->[0,03],i,->[0.1,04]} (Given)
hl = i1 + i2

h2 = i1 - i2

hl = max(@, hl)

h2 = max(@, h2)

ol = hl + h2 + 0.5

02 2xhl - h2 - 1

return ol, o2

ABSTRACT INTERPRETATION

Example

Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

def f(il1, i2):

{i,->[0,0.3],i,->[0.1,0.4]} (Given)

hl = il + i2

{h,->10.1,0.7]} (To add intervals, add the lower bounds and upper bounds)
h2 = i1 - i2

hl = max(@, hl)

h2 = max(0, h2)

ol = hl + h2 + 0.5

02 = 2xhl - h2 - 1

return ol, o2

ABSTRACT INTERPRETATION

Example

Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

def f(il, i2):
{i,->[0,0.3],i,->[0.1,04]} (Given)

hl = il + i2

{h1 ->[0.1,0.7]} (To add intervals, add the lower bounds and upper bounds)
h2 = i1 - i2

{h,->[-0.4,0.2]} (-i,->[-0.4,-0.1] and i -i,=i, +(-i)))

hl = max(@, hl)

h2 = max(0, h2)

ol = hl + h2 + 0.5

02 = 2xhl - h2 - 1

return ol, o2

ABSTRACT INTERPRETATION

Example

Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

def f(il, i2):
{i,->[0,0.3],i,->[0.1,04]} (Given)

hl = il + i2
{h1 ->[0.1,0.7]} (To add intervals, add the lower bounds and upper bounds)
h2 = i1 - i2

th,->[-04,02} (i,->[-0.4,-0.1] and i -i,=i,+(-i,)
hl = max(@, h1)

{h1 ->[0.1,0.7]} (Max has no effect on h, asitis already more than 0)
h2 = max(0, h2)

ol = hl + h2 + 0.5

02 = 2xhl - h2 - 1

return ol, o2

ABSTRACT INTERPRETATION

Example

Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

def f(il, i2):
{i,->[0,0.3],i,->[0.1,04]} (Given)

hl = il + i2
{h1 ->[0.1,0.7]} (To add intervals, add the lower bounds and upper bounds)
h2 = i1 - i2

{h,->[-0.4,0.2]} (-i,->[-0.4,-0.1] and i -i,=i, +(-i)))

hl = max(@, hl)

{h1 ->[0.1,0.7]} (Max has no effect on h, asitis already more than 0)
h2 = max(@, h2)

{h2 ->[0, 0.2]} (Max prunes the negative part from h2)

0l = hl + h2 + 0.5

02 2xhl - h2 - 1

return ol, o2

ABSTRACT INTERPRETATION

Example

Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

def f(il, i2):
{i,->[0,0.3],i,->[0.1,04]} (Given)

hl = il + i2
{h1 ->[0.1,0.7]} (To add intervals, add the lower bounds and upper bounds)
h2 = i1 - i2

th,->[-04,02} (i,->[-0.4,-0.1] and i -i,=i,+(-i,)
hl = max(@, h1)

{h1 ->[0.1,0.7]} (Max has no effect on h, asitis already more than 0)
h2 = max(0, h2)
{h,->[0, 0.2]} (Max prunes the negative part fromh,)

ol = hl + h2 + 0.5
{01-> [0.6, 1.4]} ([0.1+0+0.5,0.7+0.2+0.5])
02 = 2xhl - h2 - 1

return ol, o2

ABSTRACT INTERPRETATION

Example

Let’s try and reason about this by keeping track of the lower and upper bounds of the variables!

def f(il, i2):
{i,->[0,0.3],i,->[0.1,04]} (Given)

hl = il + i2
{h1 ->[0.1,0.7]} (To add intervals, add the lower bounds and upper bounds)
h2 = i1 - i2

th,->[-04,02} (i,->[-0.4,-0.1] and i -i,=i,+(-i,)
hl = max(@, h1)

{h1 ->[0.1,0.7]} (Max has no effect on h, asitis already more than 0)
h2 = max(0, h2)
{h,->[0, 0.2]} (Max prunes the negative part fromh,)

0l = hl + h2 + 0.5

{o1 ->[0.6, 1.4]} ([0.1+0+0.5,0.7+0.2+0.5])

02 = 2%hl - h2 - 1

{o,->[-1,0.4]} (-h2->[-0.2,0] and theno2->[2*0.1-0.2-1, 2*0.7+0 -1])
return ol, o2

ABSTRACT INTERPRETATION

Example analysis

Had to prove thatif i, ranges from [0,0.3]and i, ranges from [0.1,0.4], then 0,2-1
Have proved that: o, ->[0.6, 1.4] and o, -> [-1, 0.4]. This helps us to prove that:

© 0,2 -1

o Other similar properties:o, 2 0.6

o More complex properties: o, >0,

Maintaining intervals for variables enabled us to reason about all possible program states together.

This was possible by interpreting the program states in another abstract domain (intervals here).

ABSTRACT INTERPRETATION

Abstract Domains

e Abstract Domains (A): Domain of values that are used to keep track of the program
states (the concrete domain C) succinctly.

e Some examples: Interval, Zonotopes, Octagon, Polyhedra

(8] [7,9] =

O
e [2,2]

Concrete Domain Abstract Domain

ABSTRACT INTERPRETATION

Abstraction Function

@/ .

© [7.9]
@
6 C
9 @ [2.,2]

Concrete Domain Abstract Domain

ABSTRACT INTERPRETATION

Concretization Function

(9
(8 [7.9] m
@
6 \ 7y I
o © =

Concrete Domain Abstract Domain

ABSTRACT INTERPRETATION

Galois Connection

Vze D,VieD. a(z) C i<z C ()

A

D g D

Intuitively, this says that «,~y respect the orderings of D, D

ABSTRACT TRANSFORMERS

Introduction

e Consider the + operation and the code linez=x+y.

e When interpreting the program on interval domain:
If x* =[a, b] and y* = [c, d], then we need a operator +* that gives us z*
z* = x* +*y* =[a, b] +* [c,d] = [a+b, c+d]

e We call +* the abstract transformer for +

e We need abstract transformers for all operations in the language.

ABSTRACT TRANSFORMERS

Sou nd ness e Necessary condition for transformer correctness.
" e Wedefine the best transformer F,__*(z) as:
VzE A« (F ()/(Z))) Cu F (Z) o Concretize the z to get the set of concrete

values mapped to it

o Apply F to all those concrete values to get a set
C’ (= F(x)) of concrete values

o Get the abstract values for the set C’

e Any transformer F#(z) is sound if it over-approximates
Fbest#(z) (includes all abstract values computed by the
best transformer)

e If[a, b]l+*[cd]=]e,f], then+"issound if:

VXE[a b]l,VyE[cd] =>x+y E [f]

(C,Ec) (A4, E4)

ABSTRACT TRANSFORMERS

Precision

e Important for the practical applicability of abstract interpretation.

e Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b]+"[c,d] =[e, f], +*issound if V x € [a, b], Vv € [c, d] => x+y E [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-00, 0]

[a+c-5b+d+6]

[a+c+1,b+d]

[a+c, b+d]

ABSTRACT TRANSFORMERS

Precision

e Important for the practical applicability of abstract interpretation.

e Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b]+"[c,d] =[e, f], +*issound if V x € [a, b], Vv € [c, d] => x+y E [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-00, o0] YES

[a+c-5b+d+6]

[a+c+1,b+d]

[a+c, b+d]

ABSTRACT TRANSFORMERS

Precision

e Important for the practical applicability of abstract interpretation.

e Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b]+"[c,d] =[e, f], +*issound if V x € [a, b], Vv € [c, d] => x+y E [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-00, 00] YES NO

[a+c-5b+d+6]

[a+c+1,b+d]

[a+c, b+d]

ABSTRACT TRANSFORMERS

Precision

e Important for the practical applicability of abstract interpretation.

e Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b]+"[c,d] =[e, f], +*issound if V x € [a, b], Vv € [c, d] => x+y E [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-00, 00] YES NO

[a+c-5b+d+6] YES

[a+c+1,b+d]

[a+c, b+d]

ABSTRACT TRANSFORMERS

Precision

e Important for the practical applicability of abstract interpretation.

e Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b]+"[c,d] =[e, f], +*issound if V x € [a, b], Vv € [c, d] => x+y E [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?
[-00, 00] YES NO
[a+c-5b+d+6] YES NO

[a+c+1,b+d]

[a+c, b+d]

ABSTRACT TRANSFORMERS

Precision

e Important for the practical applicability of abstract interpretation.

e Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b]+"[c,d] =[e, f], +*issound if V x € [a, b], Vv € [c, d] => x+y E [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?
[-00, 0] YES NO
[a+c-5b+d+6] YES NO
[a+c+1,b+d] NO <don’t care>
[a+c,b+d]

ABSTRACT TRANSFORMERS

Precision

e Important for the practical applicability of abstract interpretation.

e Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b]+"[c,d] =[e, f], +*issound if V x € [a, b], Vv € [c, d] => x+y E [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?
[-00, 0] YES NO
[a+c-5b+d+6] YES NO
[a+c+1,b+d] NO <don’t care>
[a+c,b+d] YES YES

AMURTH

Motivation

e Abstract transformers are often non-trivial even for a simple operation.

E.g.: The most precise transformer for abs(x) in the interval domain is:

absﬁ(a) = [max(max(0,a.l), —a.r), max(—a.l,a.r)].

e Manually written abstract transformers error-prone (unsound) and can be imprecise.

e AMURTH found multiple bugs in abstract transformers in the existing abstract

interpretation engines.

AMURTH can synthesize non-trivial transformers in reasonable time (< 2000 seconds).

AMURTH
High Level Diagram

Concrete Domain (Integers) — A
M
Abstract Domain (Interval) —_—
R
Rel. b/w Domains (q, V) . U ~| Best L-Transformer for F
Concrete Transformer (F) — T
DSL for Possible Transformers (L) |—| H

Aa.[E, E]
a.l|la.r|0|—-E|+c0| -0 | E+E|E—E|Ex*E|min(E,E) | max(E, E)

Transformer ::
E =

AMURTH
High Level Diagram

Concrete Domain (Integers) — A
M
Abstract Domain (Interval) —_—
R
Rel. b/w Domains (q, V) . U ~| Best L-Transformer for F
Concrete Transformer (F) T (L-Transformer: Expressible in L)
DSL for Possible Transformers (L) |—| H

Aa.[E, E]
a.l|la.r|0|—-E|+c0| -0 | E+E|E—E|Ex*E|min(E,E) | max(E, E)

Transformer ::
E =

AMURTH
High Level Diagram

(Best:
Concrete Domain (Integers) — A - Sound
- Most precise among other

M d opti iblein L
Abstract Domain (Interval) —_— sound options expressiblein L)

R
Rel. b/w Domains (q, V) ., U » Best L-Transformer for F
Concrete Transformer (F) T (L-Transformer: Expressible in L)
DSL for Possible Transformers (L) |—| H

Aa.[E, E]
a.l|la.r|0|—-E|+c0| -0 | E+E|E—E|Ex*E|min(E,E) | max(E, E)

Transformer ::
E =

AMURTH

Soundness (or +*ve) Counterexamples

e AMURTH works by guessing potential transformers from the DSL.

e These guesses are then corrected/guided by counterexamples.

For the abs(x) case, say AMURTH guesses the transformer: abs*([l, r]) =[O, |+r]
Consider [-2, 2]:

- abs?[-2,2] should capture all values between [0,2]

- But abs?[-2,2] computes to [0, O] (is missing the concrete value 2)

-<[-2, 2], 2> is a soundness counterexample

General form: <a,c’>suchthat a € A and c' € y(F___*(a)) but c'& y(F*(a))

AMURTH

Soundness (or +*ve) Counterexamples

e What if we only use Soundness counterexamples to refine our guesses?

Are there some drawbacks?

AMURTH

Soundness (or +*ve) Counterexamples

e What if we only use Soundness counterexamples to refine our guesses?

Are there some drawbacks?

Ans: YES! If we only use Soundness counterexamples, nothing is stopping the tool to synthesize
[-o0, 0] everytime.

Reason: There are no preciseness constraints!

AMURTH

Precision (-ve) Counterexamples

For the abs(x) case, say AMURTH guesses the transformer: abs*([l, r]) =[O, |+r]
Consider [2, 4]:
- abs*[2, 4] should capture all values between [2, 4]
- But abs*[2, 4] computes to [0, 6] (has many redundant values, lets pick 5)
-<[2, 4], 5> is a precision counterexample

General form: (a,c’) suchthat a€ A and 3 F_, *(a) suchthat c'¢ y(F_,_*(a))

L-best

AMURTH

Algorithm Overview

e Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy

e Attempts to meet the dual objectives of soundness and precision

(a) Adding positive counterexamples (b) Adding negative counterexamples. P is a set of
positive examples (o) .

e Counterexamples generated by soundness and precision verifiers drive two CEGIS loops.

AMURTH
Algorithm Overview

sound? precise?

< >

. “‘ ,ll ‘\

Check $ eommdnees A Generate A Precision Check
! . . CEGIS o
Soundness (Gae ' Transtormer . ,' Precision
> <
positive example

negative example

AMURTH in action!

AMURTH in action!
ft— xa.f0,2]
~ Positive counterexample: ([0, 5], 3)

fy
S
F
A
a
[0, a
A
|
a
1]

]’c\ﬂ

fgbs — Xa.[0,a.l + a.r]
Negative counterexample: ([3,7],8

AMURTH in action!

— - ——
- -

AMURTH in action!

— - -
- —
- - -

-
N e e, m e —m--—-

AMURTH in action!

AMURTH in action!

AMURTH in action!

AMURTH in action!

This stops when there are no more soundness and precision counterexamples.

AMURTH

Theorems for Correctness

Theorem 1
If Algorithm terminates, it returns a best L-transformer for the concrete function f.

Theorem 2
If the DSL L is finite, Algorithm always terminates.

AMURTH

Evaluation
Domain Type Abstract Domains Operations
Constant String (CS) charAtF
String Set (size k) (SSk) concat?,
String Char Inclusion (CZ) contains’,
Prefix-Suffix (PS) toLower?, toUpper?,
String Hash (SH) trim?
Unsigned-Int (Auintv) add?, sub”, mul?,
Fixed Bitwidth Interval Signed-Int (Auinty) and®, orf, xorf,

Wrapped (W) sh1l! ashr? 1shrf

AMURTH

Results
f CS S8 cI PS SH
charAt 18.29 3.94 24.91 5.94 3.76
concat 99.05 9.57 1,983.83 8.92 609.30
contains 132.06 78.42 1,804.69 9.13 10.39
toLower 11.26 11.74 381.65 6.91 8.44
toUpper 9.77 12.18 135153 5.85 3.73
trim 431 16.35 641.53 8.52 8.29

Time taken to synthesize the transformers (in secs)

100

Similar performance as manually written transformers in terms of analysis time, imprecision
index, fixpoint iteration, program states.

Results

A

Imprec
Normal

o

v

0 100 200
Analysis Time (s)

300

400

AMURTH

10?

Imprecision Index (AMURTH)

1004 &

A

Normal

10

Imprecision Index

v
107

Fixpoint Iteration (AMURTH)

Dv
n

10" 4

10* 4/

o Imprec
4 Normal X
m timeout ‘
‘.‘v
&
10° 10* 10° 10°

Program States (AMURTH)

10° 4

10" 4

10* 4

Fixpoint Iteration

Imprec
Normal
timeout
‘
,‘.'
r g

10* 10
Program States

2
107

AMURTH

Results & Conclusion

The transformers generated by AMURTH were as effective as the manually written ones.

When transformers generated by AMURTH were compared to the existing ones, the authors
found 4 soundness bugs in the present transformers.

This shows the current manual techniques can be error-prone, imprecise and sound.

Using a tool like AMURTH can let you generate abstract transformers which are provably sound
and precise.

AMURTH

Existing Soundness Bugs

1 containsgl(m : CI)(a; : CI) : AbsBool =

2 ite(isBot(aj.l,a7.u)VisBot(az.l,az.u), 1 trimgl(a s EN 0 =

3 boolBot, 2 ite(isBot(a.l,a.u),

4 [—] ite(isTop(ai.l,aj.u) vV isTop(az.1l,a3.u), // Bug 3 Bot,

5 [-] boolTop, /] Bug 4 ite(isTop(a.l,a.u),

6 ite(—isSubset(aj.1l,a7.u), 5 Top,

7 boolFalse, 6 ite(size(a.u) <1AcontainsSpace(a.u),
8 [-] ite(size(a.u) < 1A isSubset(ajz.u,a;.1), // Bug 7 [0,0],

9 [+] ite(isEmpty(ay), 1 Fix 8 [-] a // Bug
10 boolTrue, 9 [+] [removeSpace(a.l), a.ul A =
m [-] boolTop)))) // Bug 10 32

12 [+] boolTop))) 1 Fix

(b) Abstract transformers for trim.
(a) Abstract transformers for contains.

Fig. 6. Bugs found and fixed in the CZ domain for contains and trim. The lines in blue show how the
synthesized transformers differ from the incorrect ones in SAFEgt, (denoted by the lines in red).

O N O O b W N =

AMURTH

Existing Soundness Bugs

1 concatf(a: Long) (b : Long) : Long =
trimgs(a :PS) :PS= (8)(&) 'g
.) 2 r « reverse(b); c « 0; i « @
ite(isBot(a.p,a.s), .
3 WHILE i < b
BOT,
. . 4 r «rotateLeft(r, 1)
ite(isTop(a.p,a.s),
5 IF (a & r) #0 THEN
TOP, :
; : 6 [-] ce—c|(1<<i) //SAFEstr
[-] [trimStart(a.p), trimEnd(a.s)] // Bug . .
: : : 7 [+] c«c"(1<<1i) //AMURTH
[+] [trim(a.p), trim(a.s)] 7 Fii))
S 8 1 «1+1
9 RETURN c

Fig. 7. Abstract transformers for trimin the S

. Fig. 8. Abstract transformers for concat in the SH
domain.

domain.

Backup Slides

ABSTRACT INTERPRETATION

Over-approximation Caveat

Reachable
Configurations

Approximation

Here, though the approximation we generated has some
intersection with error state, we cannot (should not) conclude
that we have errors as we over-approximate

AMURTH

Approximating Precision

e Thecurrent set of examples E is used to approximateff

e A most-precise L-transformer that satisfies E (denoted bnyﬁ) is
optimistically assumed to be f;*

AMURTH

Failed Consistency

AMURTH

Failed Consistency

AMURTH

Failed Consistency

AMURTH

Failed Consistency

AMURTH

Failed Consistency

Inconsistent: no f]ﬁE € L that satisfies all positive and negative examples.

AMURTH

Failed Consistency

Occam’s razor

AMURTH

Failed Consistency

Occam'’s razor

AMURTH
Complete Algorithm

sound? precise?
- Generate >
e Fits, Transformer
Tyes
Check + Soundness A Check Consistency Pgegg;osn Check
Soundness . CPCIS : l Precision
. : no
.o e Generate MaxSAT
- Transformer <
positive example negative example

