SYNTHESIZING ABSTRACT TRANSFORMERS

OOPSLA '22

PANKAJ KUMAR KALITA, Indian Institute of Technology Kanpur, India SUJIT KUMAR MUDULI, Indian Institute of Technology Kanpur, India LORIS D'ANTONI, University of Wisconsin-Madison, USA THOMAS REPS, University of Wisconsin-Madison, USA SUBHAJIT ROY, Indian Institute of Technology Kanpur, India

Presentor: Shaurya Gomber (1 $1^{\text {st }} \mathrm{yr}$ MS CS, UIUC)

Topics

1. What is Abstract Interpretation?
2. What are Abstract Transformers?
3. Soundness and Precision of Abstract Transformers
4. AMURTH: The Abstract Transformer Synthesizer
a. High level idea
b. Working
c. Results

ABSTRACT INTERPRETATION

Introduction

- Static Analysis: Method of reasoning (verifying, debugging ..) about computer programs without explicitly executing them.
- Abstract Interpretation: A static-analysis framework that guarantees that the information gathered about a program is a safe approximation to the program's semantics.
- Basic Idea: Approximate the program's behavior by using an abstract domain, which is a simplified representation of the values that the program can manipulate.

ABSTRACT INTERPRETATION

Example

```
def f(i1, i2):
    h1 = i1 + i2
    h2 = i1 - i2
    h1 = max(0, h1)
    h2 = max(0, h2)
    01 = h1 + h2 + 0.5
    02 = 2*h1 - h2 - 1
```

 return 01, 02

ABSTRACT INTERPRETATION

Example

Let's try and reason about this by keeping track of the lower and upper bounds of the variables!

$$
\begin{aligned}
& \operatorname{def} f(i 1, i 2): \\
& h 1=i 1+i 2 \\
& h 2=i 1-i 2 \\
& h 1=\max (0, h 1) \\
& h 2=\max (0, h 2) \\
& o 1=h 1+h 2+0.5 \\
& o 2=2 * h 1-h 2-1 \\
& \text { return o1, o2 }
\end{aligned}
$$

ABSTRACT INTERPRETATION

Example

Let's try and reason about this by keeping track of the lower and upper bounds of the variables!

```
def f(i1, i2):
    {\mp@subsup{i}{1}{}-> [0,0.3], i, -> [0.1, 0.4]} (Given)
    h1 = i1 + i2
    h2 = i1 - i2
    h1 = max(0, h1)
    h2 = max(0, h2)
    o1 = h1 + h2 + 0.5
    o2 = 2*h1 - h2 - 1
    return 01, o2
```


ABSTRACT INTERPRETATION

Example

Let's try and reason about this by keeping track of the lower and upper bounds of the variables!

```
def f(i1, i2):
    {i, -> [0,0.3], i, -> [0.1, 0.4]} (Given)
    h1 = i1 + i2
    {\mp@subsup{h}{1}{}-> [0.1,0.7]} (To add intervals, add the lower bounds and upper bounds)
    h2 = i1 - i2
    h1 = max(0, h1)
    h2 = max(0, h2)
    o1 = h1 + h2 + 0.5
    o2 = 2*h1 - h2 - 1
    return 01, o2
```


ABSTRACT INTERPRETATION

Example

Let's try and reason about this by keeping track of the lower and upper bounds of the variables!

```
def f(i1, i2):
    {i, -> [0,0.3], i, -> [0.1, 0.4]} (Given)
    h1 = i1 + i2
    {\mp@subsup{h}{1}{}-> [0.1,0.7]} (To add intervals, add the lower bounds and upper bounds)
    h2 = i1 - i2
    {\mp@subsup{h}{2}{}->[-0.4,0.2]} (-i, -> [-0.4,-0.1] and }\mp@subsup{\textrm{i}}{1}{}-\mp@subsup{\textrm{i}}{2}{}=\mp@subsup{\textrm{i}}{1}{}+(-\mp@subsup{i}{2}{})
    h1 = max(0, h1)
    h2 = max(0, h2)
    o1 = h1 + h2 + 0.5
    o2 = 2*h1 - h2 - 1
    return 01, o2
```


ABSTRACT INTERPRETATION

Example

Let's try and reason about this by keeping track of the lower and upper bounds of the variables!

```
def f(i1, i2):
    {i, -> [0,0.3], i, -> [0.1, 0.4]} (Given)
    h1 = i1 + i2
    {h
    h2 = i1 - i2
    {\mp@subsup{h}{2}{}->[-0.4,0.2]} (-i, -> [-0.4,-0.1] and }\mp@subsup{\textrm{i}}{1}{}-\mp@subsup{\textrm{i}}{2}{}=\mp@subsup{\textrm{i}}{1}{}+(-\mp@subsup{i}{2}{})
    h1 = max(0, h1)
    {\mp@subsup{h}{1}{}-> [0.1,0.7]} (Max has no effect on }\mp@subsup{h}{1}{}\mathrm{ as it is already more than 0)
    h2 = max(0, h2)
    o1 = h1 + h2 + 0.5
    o2 = 2*h1 - h2 - 1
    return 01, o2
```


ABSTRACT INTERPRETATION

Example

Let's try and reason about this by keeping track of the lower and upper bounds of the variables!

```
def f(i1, i2):
    {i, -> [0,0.3], i, -> [0.1, 0.4]} (Given)
    h1 = i1 + i2
    {h
    h2 = i1 - i2
    {\mp@subsup{h}{2}{}->[-0.4,0.2]} (-i, -> [-0.4,-0.1] and }\mp@subsup{\textrm{i}}{1}{}-\mp@subsup{\textrm{i}}{2}{}=\mp@subsup{\textrm{i}}{1}{}+(-\mp@subsup{i}{2}{})
    h1 = max(0, h1)
    {\mp@subsup{h}{1}{}-> [0.1,0.7]} (Max has no effect on }\mp@subsup{h}{1}{}\mathrm{ as it is already more than 0)
    h2 = max(0, h2)
    {h2-> [0,0.2]} (Max prunes the negative part from }\mp@subsup{h}{2}{}\mathrm{ )
    o1 = h1 + h2 + 0.5
    o2 = 2*h1 - h2 - 1
    return 01, o2
```


ABSTRACT INTERPRETATION

Example

Let's try and reason about this by keeping track of the lower and upper bounds of the variables!

```
def f(i1, i2):
    {i, -> [0,0.3], i, -> [0.1, 0.4]} (Given)
    h1 = i1 + i2
    {h
    h2 = i1 - i2
    {\mp@subsup{h}{2}{}->[-0.4,0.2]} (-i, -> [-0.4,-0.1] and }\mp@subsup{\textrm{i}}{1}{}-\mp@subsup{\textrm{i}}{2}{}=\mp@subsup{\textrm{i}}{1}{}+(-\mp@subsup{i}{2}{})
    h1 = max(0, h1)
    {\mp@subsup{h}{1}{}-> [0.1,0.7]} (Max has no effect on }\mp@subsup{h}{1}{}\mathrm{ as it is already more than 0)
    h2 = max(0, h2)
    {h2-> [0,0.2]} (Max prunes the negative part from }\mp@subsup{h}{2}{}\mathrm{ )
    o1 = h1 + h2 + 0.5
    {o, -> [0.6,1.4]} ([0.1+0 + 0.5,0.7 + 0.2 + 0.5])
    o2 = 2*h1 - h2 - 1
```

 return 01, o2

ABSTRACT INTERPRETATION

Example

Let's try and reason about this by keeping track of the lower and upper bounds of the variables!

```
def f(i1, i2):
    {i, -> [0,0.3], i, -> [0.1, 0.4]} (Given)
    h1 = i1 + i2
    {h
    h2 = i1 - i2
    {\mp@subsup{h}{2}{}->[-0.4,0.2]} (-i, -> [-0.4,-0.1] and }\mp@subsup{\textrm{i}}{1}{}-\mp@subsup{\textrm{i}}{2}{}=\mp@subsup{\textrm{i}}{1}{}+(-\mp@subsup{i}{2}{})
    h1 = max(0, h1)
    {\mp@subsup{h}{1}{}-> [0.1,0.7]} (Max has no effect on }\mp@subsup{h}{1}{}\mathrm{ as it is already more than 0)
    h2 = max(0, h2)
    {\mp@subsup{h}{2}{}-> [0,0.2]} (Max prunes the negative part from }\mp@subsup{h}{2}{}\mathrm{ )
    o1 = h1 + h2 + 0.5
    {o, -> [0.6,1.4]} ([0.1+0+0.5,0.7 + 0.2 + 0.5])
    o2 = 2*h1 - h2 - 1
    {\mp@subsup{O}{2}{}->[-1,0.4]} (-h2 -> [-0.2, 0] and then o2 -> [2*0.1-0.2-1, 2*0.7 + 0-1])
    return 01, o2
```


ABSTRACT INTERPRETATION

Example analysis

- Had to prove that if i_{1} ranges from $[0,0.3]$ and i_{2} ranges from [0.1, 0.4], then $o_{2} \geq-1$
- Have proved that: $o_{1}->[0.6,1.4]$ and $o_{2}->[-1,0.4]$. This helps us to prove that:
- $o_{2} \geq-1$
- Other similar properties: $\mathrm{o}_{1} \geq 0.6$
- More complex properties: $\mathrm{o}_{1}>\mathrm{o}_{2}$
- Maintaining intervals for variables enabled us to reason about all possible program states together.
- This was possible by interpreting the program states in another abstract domain (intervals here).

ABSTRACT INTERPRETATION

Abstract Domains

- Abstract Domains (A): Domain of values that are used to keep track of the program states (the concrete domain C) succinctly.
- Some examples: Interval, Zonotopes, Octagon, Polyhedra

5

(2)

1

ABSTRACT INTERPRETATION

Abstraction Function

Concretization Function

ABSTRACT INTERPRETATION

Galois Connection

$$
\forall x \in D, \forall \hat{x} \in \hat{D} . \alpha(x) \sqsubseteq \hat{x} \Leftrightarrow x \sqsubseteq \gamma(\hat{x})
$$

Intuitively, this says that α, γ respect the orderings of D, \hat{D}

ABSTRACT TRANSFORMERS

Introduction

- Consider the + operation and the code line $z=x+y$.
- When interpreting the program on interval domain:

If $x^{\#}=[a, b]$ and $y^{\#}=[c, d]$, then we need a operator $+^{\#}$ that gives us $z^{\#}$
$z^{\#}=x^{\#}+^{\#} y^{\#}=[a, b]+{ }^{\#}[c, d]=[a+b, c+d]$

- We call + ${ }^{\#}$ the abstract transformer for +
- We need abstract transformers for all operations in the language.

ABSTRACT TRANSFORMERS

Soundness

$\forall z \in A . \alpha(F(\gamma(z))) \sqsubseteq_{A} F^{\#}(z)$

$\left(C, \sqsubseteq_{C}\right)$
$\left(A, \sqsubseteq_{A}\right)$

- Necessary condition for transformer correctness.
- We define the best transformer $F_{\text {best }}{ }^{\#}(z)$ as:
- Concretize the z to get the set of concrete values mapped to it
- Apply F to all those concrete values to get a set $C^{\prime}(=F(x))$ of concrete values
- Get the abstract values for the set C^{\prime}
- Any transformer $\mathrm{F}^{\#}(z)$ is sound if it over-approximates $\mathrm{F}_{\text {best }}$ \# (z) (includes all abstract values computed by the best transformer)
- If $[a, b]+{ }^{\#}[c, d]=[e, f]$, then $+{ }^{\#}$ is sound if:
$\forall x \in[a, b], \forall y \in[c, d] \Rightarrow x+y \in[e, f]$

ABSTRACT TRANSFORMERS

Precision

- Important for the practical applicability of abstract interpretation.
- Can be thought of as the measure of succinctness of the transformer's output.

Consider [a, b] $+^{\#}[\mathrm{c}, \mathrm{d}]=[\mathrm{e}, \mathrm{f}],+^{\#}$ is sound if $\forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}], \forall \mathrm{y} \in[\mathrm{c}, \mathrm{d}]=>\mathrm{x}+\mathrm{y} \in[\mathrm{e}, \mathrm{f}]$
Now consider the following possible transformers:

	SOUND?	PRECISE?
$[-\infty, \infty]$		
$[a+c-5, b+d+6]$		
$[a+c+1, b+d]$		
$[a+c, b+d]$		

ABSTRACT TRANSFORMERS

Precision

- Important for the practical applicability of abstract interpretation.
- Can be thought of as the measure of succinctness of the transformer's output.

Consider [a, b] $+^{\#}[\mathrm{c}, \mathrm{d}]=[\mathrm{e}, \mathrm{f}],+^{\#}$ is sound if $\forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}], \forall \mathrm{y} \in[\mathrm{c}, \mathrm{d}]=>\mathrm{x}+\mathrm{y} \in[\mathrm{e}, \mathrm{f}]$
Now consider the following possible transformers:

	SOUND?	PRECISE?
$[-\infty, \infty]$	YES	
$[a+c-5, b+d+6]$		
$[a+c+1, b+d]$		
$[a+c, b+d]$		

ABSTRACT TRANSFORMERS

Precision

- Important for the practical applicability of abstract interpretation.
- Can be thought of as the measure of succinctness of the transformer's output.

Consider [a, b] $+^{\#}[\mathrm{c}, \mathrm{d}]=[\mathrm{e}, \mathrm{f}],+^{\#}$ is sound if $\forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}], \forall \mathrm{y} \in[\mathrm{c}, \mathrm{d}]=>\mathrm{x}+\mathrm{y} \in[\mathrm{e}, \mathrm{f}]$
Now consider the following possible transformers:

	SOUND?	PRECISE?
$[-\infty, \infty]$	YES	NO
$[a+c-5, b+d+6]$		
$[a+c+1, b+d]$		
$[a+c, b+d]$		

ABSTRACT TRANSFORMERS

Precision

- Important for the practical applicability of abstract interpretation.
- Can be thought of as the measure of succinctness of the transformer's output.

Consider [a, b] $+^{\#}[\mathrm{c}, \mathrm{d}]=[\mathrm{e}, \mathrm{f}],+^{\#}$ is sound if $\forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}], \forall \mathrm{y} \in[\mathrm{c}, \mathrm{d}]=>\mathrm{x}+\mathrm{y} \in[\mathrm{e}, \mathrm{f}]$
Now consider the following possible transformers:

	SOUND?	PRECISE?
$[-\infty, \infty]$	YES	NO
$[a+c-5, b+d+6]$	YES	
$[a+c+1, b+d]$		
$[a+c, b+d]$		

ABSTRACT TRANSFORMERS

Precision

- Important for the practical applicability of abstract interpretation.
- Can be thought of as the measure of succinctness of the transformer's output.

Consider [a, b] $+^{\#}[\mathrm{c}, \mathrm{d}]=[\mathrm{e}, \mathrm{f}],+^{\#}$ is sound if $\forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}], \forall \mathrm{y} \in[\mathrm{c}, \mathrm{d}]=>\mathrm{x}+\mathrm{y} \in[\mathrm{e}, \mathrm{f}]$
Now consider the following possible transformers:

	SOUND?	PRECISE?
$[-\infty, \infty]$	YES	NO
$[a+c-5, b+d+6]$	YES	NO
$[a+c+1, b+d]$		
$[a+c, b+d]$		

ABSTRACT TRANSFORMERS

Precision

- Important for the practical applicability of abstract interpretation.
- Can be thought of as the measure of succinctness of the transformer's output.

Consider [a, b] $+^{\#}[\mathrm{c}, \mathrm{d}]=[\mathrm{e}, \mathrm{f}],+^{\#}$ is sound if $\forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}], \forall \mathrm{y} \in[\mathrm{c}, \mathrm{d}]=>\mathrm{x}+\mathrm{y} \in[\mathrm{e}, \mathrm{f}]$
Now consider the following possible transformers:

	SOUND?	PRECISE?
$[-\infty, \infty]$	YES	NO
$[a+c-5, b+d+6]$	YES	NO
$[a+c+1, b+d]$	NO	<don't care>
$[a+c, b+d]$		

ABSTRACT TRANSFORMERS

Precision

- Important for the practical applicability of abstract interpretation.
- Can be thought of as the measure of succinctness of the transformer's output.

Consider [a, b] $+^{\#}[\mathrm{c}, \mathrm{d}]=[\mathrm{e}, \mathrm{f}],+^{\#}$ is sound if $\forall \mathrm{x} \in[\mathrm{a}, \mathrm{b}], \forall \mathrm{y} \in[\mathrm{c}, \mathrm{d}]=>\mathrm{x}+\mathrm{y} \in[\mathrm{e}, \mathrm{f}]$
Now consider the following possible transformers:

	SOUND?	PRECISE?
$[-\infty, \infty]$	YES	NO
$[a+c-5, b+d+6]$	YES	NO
$[a+c+1, b+d]$	NO	<don't care>
$[a+c, b+d]$	YES	YES

AMURTH

Motivation

- Abstract transformers are often non-trivial even for a simple operation.
E.g.: The most precise transformer for abs(x) in the interval domain is:

$$
\operatorname{abs}^{\sharp}(\mathrm{a})=[\max (\max (0, \mathrm{a} .1),-\mathrm{a} \cdot \mathrm{r}), \max (-\mathrm{a} .1, \mathrm{a} \cdot \mathrm{r})] .
$$

- Manually written abstract transformers error-prone (unsound) and can be imprecise.
- AMURTH found multiple bugs in abstract transformers in the existing abstract interpretation engines.

AMURTH can synthesize non-trivial transformers in reasonable time (< 2000 seconds).

AMURTH

High Level Diagram

AMURTH

High Level Diagram

AMURTH

High Level Diagram

$$
\begin{aligned}
\text { Transformer }::=\lambda a .[E, E] \\
\qquad E::=a . l|a \cdot r| 0|-E|+\infty|-\infty| E+E|E-E| E * E|\min (E, E)| \max (E, E)
\end{aligned}
$$

AMURTH

Soundness (or +ve) Counterexamples

- AMURTH works by guessing potential transformers from the DSL.
- These guesses are then corrected/guided by counterexamples.

For the abs(x) case, say AMURTH guesses the transformer: abs\# ${ }^{\#}([1, r])=[0, I+r]$
Consider [-2, 2]:

- abs\#[-2,2] should capture all values between [0,2]
- But abs\#[-2,2] computes to [0, 0] (is missing the concrete value 2)
$-<[-2,2], 2>$ is a soundness counterexample

General form: $<a, c^{\prime}>$ such that $a \in A$ and $c^{\prime} \in \gamma\left(F_{\text {best }}^{\#}(a)\right)$ but $c^{\prime} \ddagger \gamma\left(F^{\#}(a)\right)$

AMURTH

Soundness (or +ve) Counterexamples

- What if we only use Soundness counterexamples to refine our guesses?

Are there some drawbacks?

AMURTH

Soundness (or +ve) Counterexamples

- What if we only use Soundness counterexamples to refine our guesses?

Are there some drawbacks?

Ans: YES! If we only use Soundness counterexamples, nothing is stopping the tool to synthesize $[-\infty, \infty]$ everytime.

Reason: There are no preciseness constraints!

AMURTH

Precision (-ve) Counterexamples

For the abs(x) case, say AMURTH guesses the transformer: abs ${ }^{\#}([I, r])=[0,1+r]$
Consider [2, 4]:

- abs" $[2,4]$ should capture all values between $[2,4]$
- But abs\#[2,4] computes to [0, 6] (has many redundant values, lets pick 5)
- < [2, 4], 5> is a precision counterexample

General form: $\left\langle\mathrm{a}, \mathrm{c}^{\prime}\right\rangle$ such that $\mathrm{a} \in \mathrm{A}$ and $\exists \mathrm{F}_{\text {L-best }}{ }^{\#}(\mathrm{a})$ such that $\mathrm{c}^{\prime} \notin \mathrm{y}\left(\mathrm{F}_{\text {L-best }} \#(\mathrm{a})\right)$

AMURTH

Algorithm Overview

- Amurth uses counterexample-guided inductive synthesis (CEGIS) strategy
- Attempts to meet the dual objectives of soundness and precision

(a) Adding positive counterexamples

(b) Adding negative counterexamples. P is a set of positive examples (॰).
- Counterexamples generated by soundness and precision verifiers drive two CEGIS loops.

AMURTH

Algorithm Overview

Amurth in action!

Amurth in action!

$$
f_{a b s}^{\sharp} \leftarrow \lambda a .[0,2]
$$

Positive counterexample: $\langle[0,5], 3\rangle$

$$
f_{a b s}^{\sharp} \leftarrow \lambda a \cdot[0, a . l+a . r]
$$

Negative counterexample: $\langle[3,7], 8\rangle$

Amurth in action!

Amurth in action!

Amurth in action!

Amurth in action!

Amurth in action!

Amurth in action!

This stops when there are no more soundness and precision counterexamples.

AMURTH

Theorems for Correctness

Theorem 1

If Algorithm terminates, it returns a best L-transformer for the concrete function f.

Theorem 2

If the DSL L is finite, Algorithm always terminates.

AMURTH

Evaluation

Domain Type	Abstract Domains	Operations
String	Constant String ($\mathcal{C S}$) String Set (size $k)\left(\mathcal{S S}_{k}\right)$ Char Inclusion ($\mathcal{C I}$) Prefix-Suffix ($\mathcal{P S}$) String Hash $(\mathcal{S H})$	```charAt # concat#, contains#, toLower }\mp@subsup{}{}{\sharp}\mathrm{ , toUpper }\mp@subsup{}{}{\sharp}\mathrm{ , trim```
Fixed Bitwidth Interval	Unsigned-Int ($\mathcal{A}_{\text {uintv }}$) Signed-Int ($\mathcal{A}_{\text {uintv }}$) Wrapped (\mathcal{W})	add ${ }^{\sharp}$, sub $^{\sharp}$, mul $^{\sharp}$ and ${ }^{\sharp}$, or ${ }^{\sharp}$, xor ${ }^{\sharp}$, shl $1^{\sharp}, \mathrm{ashr}{ }^{\sharp}, 1 \mathrm{shr}{ }^{\sharp}$

AMURTH

Results

f	$\mathcal{C S}$	$\mathcal{S S}$	\boldsymbol{C}	\mathcal{I}	$\mathcal{P S}$
charAt	18.29	3.94	24.91	5.94	3.76
concat	99.05	9.57	$1,983.83$	8.92	609.30
contains	132.06	78.42	$1,804.69$	9.13	10.39
toLower	11.26	11.74	381.65	6.91	8.44
toUpper	9.77	12.18	735.13	5.85	3.73
trim	4.31	16.35	641.53	8.52	8.29

Time taken to synthesize the transformers (in secs)

AMURTH

Results

Similar performance as manually written transformers in terms of analysis time, imprecision index, fixpoint iteration, program states.

AMURTH

Results \& Conclusion

- The transformers generated by AMURTH were as effective as the manually written ones.
- When transformers generated by AMURTH were compared to the existing ones, the authors found 4 soundness bugs in the present transformers.
- This shows the current manual techniques can be error-prone, imprecise and sound.
- Using a tool like AMURTH can let you generate abstract transformers which are provably sound and precise.

AMURTH

Existing Soundness Bugs

```
contains \({ }_{C I}^{\#}\left(\mathrm{a}_{1}: C I\right)\left(\mathrm{a}_{2}: C I\right):\) AbsBool \(=\)
ite(isBot ( \(\left.a_{1} . l, a_{1} . u\right) V\) isBot ( \(\left.a_{2} .1, a_{2} . u\right)\),
    boolBot,
[-] ite(isTop( \(\left.a_{1} .1, a_{1} . u\right) \vee \operatorname{isTop}\left(a_{2} .1, a_{2} . u\right)\), // Bug
[-] boolTop, // Bug
        ite ( \(\neg\) isSubset ( \(\left.a_{2} . l, a_{1} . u\right)\),
            boolFalse,
    [-] ite(size \(\left(a_{2} \cdot u\right) \leq 1 \wedge\) isSubset \(\left(a_{2} \cdot u, a_{1} .1\right)\), // Bug 7
    [+] ite(isEmpty \(\left(a_{2}\right)\), // Fix
                boolTrue,
        [-] boolTop))))
        [+] boolTop)))
            // Bug 10
            // Fix
    (b) Abstract transformers for trim.
```

```
\(\operatorname{trim}_{C I}^{\#}(\mathrm{a}: C I): C I=\)
```

$\operatorname{trim}_{C I}^{\#}(\mathrm{a}: C I): C I=$
ite(isBot(a.l,a.u),
ite(isBot(a.l,a.u),
Bot,
Bot,
ite(isTop(a.l,a.u),
ite(isTop(a.l,a.u),
Top,
Top,
ite(size(a.u) $\leq 1 \wedge$ containsSpace(a.u),
ite(size(a.u) $\leq 1 \wedge$ containsSpace(a.u),
[Ø, Ø]
[Ø, Ø]
[-] a // Bug
[-] a // Bug
[+] [removeSpace(a.l), a.u] // Fix
[+] [removeSpace(a.l), a.u] // Fix
)))

```
        )))
```

```
(a) Abstract transformers for contains.
```

Fig. 6. Bugs found and fixed in the $C I$ domain for contains and trim. The lines in blue show how the synthesized transformers differ from the incorrect ones in $\mathrm{SAFE}_{\text {str }}$ (denoted by the lines in red).

AMURTH

Existing Soundness Bugs

```
1 trim
2 ite(isBot(a.p,a.s),
BOT,
ite(isTop(a.p,a.s),
TOP,
6 [-] [trimStart(a.p), trimEnd(a.s)] // Bug
7 [+] [trim(a.p), trim(a.s)] // Fix
8 ))
```

Fig. 7. Abstract transformers for trim in the $\mathcal{P S}$ domain.

```
concat*#(a : Long)(b : Long) : Long =
```



```
    WHILE i < b
            r}\leftarrowrotateLeft(r, 1)
            IF (a & r) }\not=0\mathrm{ THEN
[-] c\leftarrowc|(1<< i) // SAFEE str
[+] c \leftarrow c^(1<< i) //AmuRTH
8 i \leftarrow i + 1
9 RETURN c
```

Fig. 8. Abstract transformers for concat in the $\mathcal{S H}$ domain.

Thanks

Backup Slides

ABSTRACT INTERPRETATION

Over-approximation Caveat

Here, though the approximation we generated has some intersection with error state, we cannot (should not) conclude that we have errors as we over-approximate

AMURTH

Approximating Precision

- The current set of examples E is used to approximate $f_{L}^{\#}$
- A most-precise L-transformer that satisfies E (denoted by $f_{E}^{\#}$) is optimistically assumed to be $f_{L}^{\#}$

Failed Consistency

Failed Consistency

Failed Consistency

Failed Consistency

AMURTH

Failed Consistency

Inconsistent: no $f_{E}^{\sharp} \in L$ that satisfies all positive and negative examples.

Failed Consistency

Occam's razor

Failed Consistency

AMURTH

Complete Algorithm

