
Satisfiability and Synthesis
 Modulo Oracles
 Elizabeth Polgreen, Andrew Reynolds, Sanjit A. Seshia

Why Satisfiability Modulo Oracles (SMTO)

Find a prime number between 15 and 18

(define-fun-rec isPrimeRec ((a Int) (b Int)) Bool
(ite (> b (div a 2)) true
(ite (= (mod a b) 0)
false
(isPrimeRec a (+ b 1)))))

(define-fun isPrime ((a Int)) Bool
(ite (<= a 1)
false
(isPrimeRec a 2)))

(declare-const p Int)
(assert (isPrime p))
(assert (and (>= 15 p) (<= p 18)))

Easy?

Not for state-of-the-art SMT Solvers like CVC5 L

Why?

Too complex to reason about

Why Satisfiability Modulo Oracles (SMTO)

A more practical example!

AWS uses a tool called Zelkova to reason about Access Control Policies

“Allows access to a resource if a string S in the request context is numerically less than 42”

How to encode 𝑟𝑒𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑂𝑓𝑆𝑡𝑟 𝑠 < 42 in SMT

https://www.amazon.science/blog/a-billion-smt-queries-a-day

Why don’t off-the-shelf solvers work?

1. Some parts are hard to reason about

2. Some parts are hard to model in SMT

Solution: Use “executable” oracles!!

- isPrime

- Type-casting semantics

What are oracles?

A component (code, binary, anything) that can be queried!

IsPrime
2 True
4
5

False
True

RealValueOfStr
“02” 2

“3.1e1” 31

Existing use of oracles

Many algorithms already use oracles!

1. Counter-example guided inductive synthesis

[1] Combinatorial sketching for finite programs. Solar-Lezama et. al

Verifier
(f = a*b)Is 𝑓 𝑎, 𝑏 = 𝑎 + 𝑏 correct No, wrong on (3,2)

2. ICE Learning

[2] ICE: A robust framework for learning invariants Garg et. al

𝐼𝑠	𝐼 = 𝑥 > 5	𝑐𝑜𝑟𝑟𝑒𝑐𝑡?

Positive
Witness

Negative
Witness

Implication
Witness

No, and 𝐼 0 = 𝑡𝑟𝑢𝑒

No, and 𝐼 100 = 𝑓𝑎𝑙𝑠𝑒

No, and 𝐼 6 ⇒ 𝐼(5)

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=8BX3BokAAAAJ&citation_for_view=8BX3BokAAAAJ:u5HHmVD_uO8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=X8CHODEAAAAJ&citation_for_view=X8CHODEAAAAJ:eQOLeE2rZwMC

What does this work really do?

People use oracles but build their custom solvers

As the solver needs custom information about the oracle
Like what does the response from oracle mean

This work proposes a unifying way to:

- Define oracles and how they interact with the solvers

- Give a unifying algorithm to solve SMT and Synth problems in presence of oracles

What are oracle interfaces?

Oracle interface defines how an oracle and the solver interact!

1. Query Domain à Defines oracle inputs (y)

2. Response Co-Domain à Defines oracle outputs (z)

3. Assumption Generator à 𝛼!"#(𝑦, 𝑧)

𝑖𝑠𝑃𝑟𝑖𝑚𝑒 𝑦 = 𝑧

4. Constraints Generator à 𝛽!"#(y, z)

Generates assumptions 𝑨 that the solver can make!

IsPrimey z

𝑖𝑠𝑃𝑟𝑖𝑚𝑒 2 = 𝑇𝑟𝑢𝑒
𝑖𝑠𝑃𝑟𝑖𝑚𝑒 4 = 𝐹𝑎𝑙𝑠𝑒
𝑖𝑠𝑃𝑟𝑖𝑚𝑒 5 = 𝑇𝑟𝑢𝑒
⋯

Generates constraints 𝑩 that the solver must satisfy!
cex_genf

𝑓 𝑧$, 𝑧% = 𝑧&

𝑧$, 𝑧% , 𝑧&

𝑓 2,2 = 4
𝑓 3,2 = 6
⋯

𝑨 ⇒ 𝜌

𝑨 ⇒ 𝜌 ∧ 𝑩

SMTO Formulation

• 𝑓	 Ordinary (non-oracle) function symbols
• �⃗�	 Oracle function symbols (that are modelled using oracles)

• A formula 𝜌

SATISFIABLE: ∃𝑓 ⋅ ∀�⃗� ⋅ 𝐴 ⇒ (𝜌 ∧ 𝐵) is satisfiable.
where A is the set of assumptions generated by the oracle interfaces,
and B is the set of constraints generated by the oracle interfaces

• 𝐼	 Oracle interfaces modelling the oracle symbols

UNSATISFIABLE: ∃𝑓 ⋅ ∃�⃗� ⋅ 𝐴 ∧ 𝜌 ∧ 𝐵 is unsatisfiable.

Instability of Unrestricted SMTO

SATISFIABLE: ∃𝑓 ⋅ ∀�⃗� ⋅ 𝐴 ⇒ (𝜌 ∧ 𝐵) is satisfiable.

UNSATISFIABLE: ∃𝑓 ⋅ ∃�⃗� ⋅ 𝐴 ∧ 𝜌 ∧ 𝐵 is unsatisfiable.

 Say after i calls to the oracle, the assumption set A becomes unsatisfiable.

Conflicting Oracle Results!

The problem becomes both SAT and UNSAT

 A similar problem can occur if the constraints set B is satisfiable and then becomes unsat.

Definitional SMTO

A fragment of SMTO is definitional if:

• All oracles are functional!

• Generated assumptions 𝑨 are of the form 𝜃 𝑦$, 𝑦%, ⋯ = 𝑧

𝑖𝑠𝑃𝑟𝑖𝑚𝑒 2 = 𝑇𝑟𝑢𝑒
𝑖𝑠𝑃𝑟𝑖𝑚𝑒 4 = 𝐹𝑎𝑙𝑠𝑒
𝑖𝑠𝑃𝑟𝑖𝑚𝑒 5 = 𝑇𝑟𝑢𝑒
⋯

• Generated set of constraints 𝑩 is empty.

Working of SMTO

SMT Solver
Oracles

Consistency
Checker

IsPrime
* i𝑠𝑃𝑟𝑖𝑚𝑒 treated as a normal uninterpreted function by the SMT Solver!

Oracle Assumptions (A):
 {}

𝜌 = 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 𝑛 ∧ 𝑛 ≥ 15 ∧ 𝑛 ≤ 18 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 = 	 𝐼𝑓 𝑛 = 15, 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒
𝑛 = 15

𝑖𝑠𝑃𝑟𝑖𝑚𝑒 15 ? False

Conflict!
Add Assumption!

∃𝑛	∃𝑖𝑠𝑃𝑟𝑖𝑚𝑒 ⋅ 𝜌 ∧ 𝐴

Working of SMTO

SMT Solver
Oracles

Consistency
Checker

IsPrime
* i𝑠𝑃𝑟𝑖𝑚𝑒 treated as a normal uninterpreted function by the SMT Solver!

Oracle Assumptions (A):
 {𝑖𝑠𝑃𝑟𝑖𝑚𝑒 15 = 𝑓𝑎𝑙𝑠𝑒}

𝜌 = 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 𝑛 ∧ 𝑛 ≥ 15 ∧ 𝑛 ≤ 18 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 = 	 𝐼𝑓 𝑛 = 16, 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒
𝑛 = 16

𝑖𝑠𝑃𝑟𝑖𝑚𝑒 16 ? False

Conflict!
Add Assumption!

∃𝑛	∃𝑖𝑠𝑃𝑟𝑖𝑚𝑒 ⋅ 𝜌 ∧ 𝐴

Working of SMTO

SMT Solver
Oracles

Consistency
Checker

IsPrime
* i𝑠𝑃𝑟𝑖𝑚𝑒 treated as a normal uninterpreted function by the SMT Solver!

Oracle Assumptions (A):
 {𝑖𝑠𝑃𝑟𝑖𝑚𝑒 15 = 𝑓𝑎𝑙𝑠𝑒
	 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 16 = 𝑓𝑎𝑙𝑠𝑒}

𝜌 = 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 𝑛 ∧ 𝑛 ≥ 15 ∧ 𝑛 ≤ 18

∃𝑛	∃𝑖𝑠𝑃𝑟𝑖𝑚𝑒 ⋅ 𝜌 ∧ 𝐴

Working of SMTO

SMT Solver
Oracles

Consistency
Checker

IsPrime
* i𝑠𝑃𝑟𝑖𝑚𝑒 treated as a normal uninterpreted function by the SMT Solver!

Oracle Assumptions (A):
 {𝑖𝑠𝑃𝑟𝑖𝑚𝑒 15 = 𝑓𝑎𝑙𝑠𝑒
	 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 16 = 𝑓𝑎𝑙𝑠𝑒}

𝜌 = 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 𝑛 ∧ 𝑛 ≥ 15 ∧ 𝑛 ≤ 𝟏𝟔

∃𝑛	∃𝑖𝑠𝑃𝑟𝑖𝑚𝑒 ⋅ 𝜌 ∧ 𝐴

* Say our problem was to find a n ≤ 16

UNSAT!

Working of SMTO

SMT Solver
Oracles

Consistency
Checker

IsPrime
* i𝑠𝑃𝑟𝑖𝑚𝑒 treated as a normal uninterpreted function by the SMT Solver!

Oracle Assumptions (A):
 {𝑖𝑠𝑃𝑟𝑖𝑚𝑒 15 = 𝑓𝑎𝑙𝑠𝑒
	 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 16 = 𝑓𝑎𝑙𝑠𝑒}

𝜌 = 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 𝑛 ∧ 𝑛 ≥ 15 ∧ 𝑛 ≤ 18 𝑖𝑠𝑃𝑟𝑖𝑚𝑒 = 	 𝐼𝑓 𝑛 = 17, 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒
𝑛 = 17

𝑖𝑠𝑃𝑟𝑖𝑚𝑒 17 ? True

Assertions consistent
with oracles!

∃𝑛	∃𝑖𝑠𝑃𝑟𝑖𝑚𝑒 ⋅ 𝜌 ∧ 𝐴

SAT, 𝑛 = 17

Type-casting Handling

RealValueOfStr

“02” 2

“3.1e1” 31

Model semantics of “string s is numerically less than 42”

Now possible through oracles!

𝜙 = 𝐼𝑠𝑁𝑢𝑚𝑒𝑟𝑖𝑐 𝑠 ∧ (𝑅𝑒𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑂𝑓𝑆𝑡𝑟 𝑠 < 42)

“a” -1

IsNumeric

“02”

“3.1e1” True

“a” False

True

Things to consider while using SMTO

Slow oracles can lead to slower query-solving time

It is assumed that the oracles give correct answers
What if oracle gives isPrime(4) = true

Calling external oracles can be a security threat?

Why Synthesis Modulo Oracles (SyMO)

A B

Can we use Program Synthesis to find f?

f

Checking if f is correct will need calling image processing libraries

Can now be done in an executable oracle

SYMO Formulation

• 𝑓	 Ordinary (non-oracle) function symbols to be synthesized
• �⃗�	 Oracle function symbols (that are modelled using oracles)

• A formula	∀𝑥 ⋅ 𝜙
• 𝐼	 Oracle interfaces modelling the oracle symbols

𝑓∗	𝑖𝑠	𝑎	𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛	𝑖𝑓	𝑡ℎ𝑒	𝑆𝑀𝑇𝑂	𝑝𝑟𝑜𝑏𝑙𝑒𝑚 �⃗�, �⃗�, ¬𝜙 𝑓 → 𝑓∗ 	is UNSAT

SYMO Solving

SyGuS Solver
∃𝑓. 𝐴 ∧ 𝐵

• Assumptions Generated by the Oracles 𝑨

• Constraints Generated by the Oracles 𝑩

SMTO Solver
∃𝑥	. ¬𝜙

• A formula	∀𝑥 ⋅ 𝜙

𝐴 = {}
𝐵 = {}

𝑓∗

Requirements:

• All assumptions of the form 𝜃 𝑦 = 𝑧
• Oracles can generate constraints:

• Not used by SMTO
• Passed to the synthesis phase

𝛼(, 𝛽(

𝛽(can be something like 𝑓 3,2 = 6

SMTO Solver gives SAT!

𝑓∗ is not correct, need to synthesize again

SYMO Solving

SyGuS Solver
∃𝑓. 𝐴 ∧ 𝐵

• Assumptions Generated by the Oracles 𝑨

• Constraints Generated by the Oracles 𝑩

SMTO Solver
∃𝑥	. ¬𝜙

• A formula	∀𝑥 ⋅ 𝜙

𝐴 = {𝛼(}
𝐵 = {𝛽(}

𝑓∗

Requirements:

• All assumptions of the form 𝜃 𝑦 = 𝑧
• Oracles can generate constraints:

• Not used by SMTO
• Passed to the synthesis phase

SMTO Solver gives UNSAT!

We are done!

𝑓∗

SYMO’s Flexibility

Thanks!

