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Supervised and Unsupervised learning formulations 
to train "neural" abstract transformers!
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Logical Reasoning
Structured rules → analyze facts (premises) → answer questions (derive conclusions)!
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Logical Reasoning

All humans are mortal.
Socrates is a human.

Is Socrates 
mortal?

Hmm, if all humans are 
mortal and Socrates is 

a human, then he is 
mortal ofc.

Structured rules → analyze facts (premises) → answer questions (derive conclusions)!
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True
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a human, then he is 
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Logical Reasoning in LLMs

All humans are mortal.
Socrates is a human.

Is Socrates 
mortal?
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True



Logical Reasoning in LLMs

Those who enjoy Poetry write short verses. 
Those who enjoy Novels write long stories. 

Shaurya writes both short verses and long stories.

Does Shaurya 
enjoy poetry?

12

Though Shaurya writes 
short verses, he may or 

may not enjoy Poetry. Hard 
to say.

Uncertain
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Logical Reasoning in LLMs
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If (A⇒ B) and B holds, then A holds. Modus GPT!
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Problem: LLMs are bad at Logical Reasoning
• Unreliable: fail on out-of-domain tasks [1]
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LLMs are bad at Logical Reasoning
• Unreliable: fail on out-of-domain tasks [1], have trouble understanding negation [2]
• Scaling fails: bigger models don’t improve core logic (e.g., Modus Tollens) [3]
• Models lean on data patterns, not reasoning skills.
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then A does not hold.



Logical Reasoning is essential for AI!

• Truthfulness in AI systems: ensures chatbot answers follow from retrieved facts.

• Advancing science & maths: enables theorem proving and knowledge discovery.

• Better education tools: tutoring systems that teach clarity and rigor.
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How to make LLMs reason well?
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Specialized tools exist for logical reasoning!



First-order Logic

• A formal system for writing logical statements about the world.

• Predicates state properties or relations of objects.
- Lazy(X) holds means X is lazy (e.g. Lazy(Shaurya))
- Loves(X, Y) means X loves Y (e.g. Loves(Shaurya, Food))

• Has ∀ (for all) and ∃ (there exists) to talk about general rules.
• ∀X (PhDStudent(X) ⇒ NeedToTakeQuals(X)) means "Every X who is a PhD student has to take quals."
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First-order Logic

29

NL Description FOL Conversion

Socrates is a human. Human(Socrates)

All humans are mortal. ∀x (Human(x)⇒ Mortal(x))

Those who enjoy Poetry write short verses. ∀x (EnjoyPoetry(x) ⇒ WriteShortVerses(x))

Shaurya writes both short verses and long 
stories.

WriteShortVerses(Shaurya) ∧ 
WriteLongStories(Shaurya)



First-order Logic Prover
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• Takes FOL premises and applies sound deduction to reason correctly.
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• Takes FOL premises and applies sound deduction to reason correctly.

• Four possible cases: (1) True

∀x (Human(x)  ⇒ Mortal(x)) 
Human(Socrates)

Mortal(Socrates)

True

A

C

Prover is able to prove A⇒C valid!



First-order Logic Prover
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• Takes FOL premises and applies sound deduction to reason correctly.

• Four possible cases: (1) True (2) False

∀x (Human(x)  ⇒ Mortal(x)) 
Human(Socrates)

¬Mortal(Socrates)

True

A

C

Prover is able to prove A⇒ ¬C valid!

False



First-order Logic Prover
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• Takes FOL premises and applies sound deduction to reason correctly.

• Four possible cases: (1) True (2) False (3) Uncertain

∀x (Human(x)  ⇒ Mortal(x)) 
Human(Socrates)

Mortal(Shaurya)

A

C

Prover is not able to prove A⇒C or A⇒ ¬C valid!

Uncertain



Error

First-order Logic Prover
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• Takes FOL premises and applies sound deduction to reason correctly.

• Four possible cases: (1) True (2) False (3) Uncertain (4) Error

∀x (Human(x)  ⇒ Mortal(x)))
Human(Socrates)

Mortal(Socrates)

A

C

FOL Syntax errors!



How to make LLMs reason well?
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Let the cobbler stick to his last!

What are LLMs good at?

Understanding and parsing natural language, 
but not guaranteed logical deduction.

What are provers good at?

Sound logical deductions given the premises in FOL.

Instead of asking LLMs to do everything, 
ask them to formalize the NL premises into FOL
and offload the reasoning to a solver.



Methodology
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All rectangles have four sides.
All four-sided things are 

shapes.

Are all rectangles 
shapes?

∀x (Rectangle(x) ⇒ FourSides(x))
∀x (FourSides(x)⇒ IsShape(x))

∀x (Rectangle(x) ⇒ IsShape(x))

True

Semantic 
Parsing 
using LLMs

Offloading to
solver
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True

MAJORITY VOTING!



Methodology

• Shifts LLM's task: Reasoning           Formalization in FOL

• Trade-off: NL expressiveness for syntactically strict logical formulas.

• 10-way majority procedure to mitigate formalization errors.
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Datasets: (1) ProofWriter
• Synthetically generated data!
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Datasets: (1) ProofWriter
• Synthetically generated data!

• Fixed Rules:
1. is(X, Y)
2. verb(X, Y) [Likes(Cat, Dog)]
3. [C1 and C2 and ..] => C
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Datasets: (1) ProofWriter
• Synthetically generated data!

• Fixed Rules:
1. is(X, Y)
2. verb(X, Y) [Likes(Cat, Dog)]
3. [C1 and C2 and ..] => C

• Makes formalization task 
easier?

49ProofWriter: Generating Implications, Proofs, and Abductive Statements over Natural Language. Tajford et. Al. ACL 2021



Datasets: (2) FOLIO
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• Expert-written data!

FOLIO: Natural Language Reasoning with First-Order Logic. Han et. Al. EMNLP 2024



Datasets: (2) FOLIO
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• Expert-written data!

• Less number of premises than 
ProofWriter (5 vs19), but 
complex!

FOLIO: Natural Language Reasoning with First-Order Logic. Han et. Al. EMNLP 2024



Datasets: (2) FOLIO
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• Expert-written data!

• Less number of premises than 
ProofWriter (5 vs19), but 
complex!

• Also provides FOL translations 
for these premises and 
conclusions!

FOLIO: Natural Language Reasoning with First-Order Logic. Han et. Al. EMNLP 2024



Models used in experiments

• GPT-3.5 [1] and GPT-4 [2]
• StarCoder+ [3]

- Free, Open Access
- Smaller (15B params) than the GPT models (175B+ models)
- Allows dataset search: wasn't trained on FOLIO or ProofWriter!

53

1. Training language models to follow instructions with human feedback. Ouyang et. Al. NeurIPS 2022
2. GPT-4 technical report. OpenAI 2023
3. Starcoder: may the source be with you! Li et. Al. TMLR 2023
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• GPT-3.5 [1] and GPT-4 [2]
• StarCoder+ [3]

- Free, Open Access
- Smaller (15B params) than the GPT models (175B+ models)
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1. Training language models to follow instructions with human feedback. Ouyang et. Al. NeurIPS 2022
2. GPT-4 technical report. OpenAI 2023
3. Starcoder: may the source be with you! Li et. Al. TMLR 2023
4. Prover9 and mace4 http://www.cs.unm.edu/mccune/prover9/ McCune 2005-2010

FOL Prover used
• Prover9[4]:  Automated FOL prover

http://www.cs.unm.edu/mccune/prover9/
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Baselines

• Common setup: ICL with 8 
fixed FOLIO examples

• Variation: 3 baselines differ 
in content of examples

• Decoding: 10 generations 
(T = 0.8) → majority-vote

57

All dogs are mammals. 
Harry is a dog. 
Is Harry a mammal?

<EVALUATE> 
...

All rectangles have four sides. 
All four-sided things are shapes. 
Are all rectangles shapes?

<EVALUATE> 
ANSWER: True 
</EVALUATE>

…
…   7 more examples
...

ex1

ex2...8

question



Baselines: (1) Naive
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• Examples contain: Problem + Answer

All rectangles have four sides. 
All four-sided things are shapes. 
Are all rectangles shapes?

<EVALUATE> 
ANSWER: True 
</EVALUATE>

Problem

Answer

Direct Guess!



Baselines: (2) COT
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• Examples contain: Problem + NL Reasoning + Answer

Problem

Answer

All rectangles have four sides. 
All four-sided things are shapes. 
Are all rectangles shapes?

<EVALUATE> 
Let's think step by step. Since all rectangles have 
four sides, and all four-sided things are shapes, 
then all rectangles must be shapes, so True! 
ANSWER: True
</EVALUATE>

NL Reasoning

Think & Guess!



Baselines: (3) Scratchpad
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• Examples contain: Problem + FOL Formalizations + Answer

Problem

Answer

FOL Formalizations

All rectangles have four sides. 
All four-sided things are shapes. 
Are all rectangles shapes?

<EVALUATE> 
NL: All rectangles have four sides. 
FOL: all x. (rectangle(x) -> foursides(x)) 
NL: All four-sided things are shapes. 
FOL: all x. (foursides(x) -> isshape(x)) 
NL: Are all rectangles shapes? 
FOL: all x. (rectangle(x) -> isshape(x)) 
ANSWER: True 
</EVALUATE> Formalize & Guess!

Only FOLIO dataset 
provides ground-truth 
formulas!



Our Approach: LINC
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• Examples contain: Problem + FOL Formalizations

Problem

FOL Formalizations

All rectangles have four sides. 
All four-sided things are shapes. 
Are all rectangles shapes?

<EVALUATE> 
NL: All rectangles have four sides. 
FOL: all x. (rectangle(x) -> foursides(x)) 
NL: All four-sided things are shapes. 
FOL: all x. (foursides(x) -> isshape(x)) 
NL: Are all rectangles shapes? 
FOL: all x. (rectangle(x) -> isshape(x)) 
</EVALUATE>

Formalize & Offload!

True
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Results: ProofWriter (Accuracy)
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• LINC comfortably beats all the 
baselines!

• Models formalize well even with 
more premises than seen in ICL 
examples.

• Formalization alone not enough
as Scratchpad stays low.



Results: ProofWriter (Accuracy vs Proof Depths)
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• Proof depth: Number of reasoning steps needed.

• LINC remains strong as proof depths increase (thanks to the solver)!
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Results: FOLIO (Accuracy)

68

• LINC leads to some gains for 
StarCoder+ and GPT3.

• However, GPT-4 with COT 
performs better than LINC!

• FOLIO has more 
complicated premises (hard 
to formalize)!
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Person(Harry) & Book(Walden) missing!
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1. Fails to capture implicit information.
2. Fails to capture explicit information (choice of representation).

Person(Harry) & Book(Walden) missing!



Results: FOLIO (3 LINC Failure Modes)
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1. Fails to capture implicit information.
2. Fails to capture explicit information (choice of representation).
3. FOL contains syntax error.

Person(Harry) & Book(Walden) missing!

Badults used both as
constant and predicate!



Results: FOLIO (3 COT Failure Modes)
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1. COT concludes something different than it suggests ("No reason to believe X" => "X is false").
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1. COT concludes something different than it suggests ("No reason to believe X" => "X is false").
2. COT makes incorrect logical deductions.

If on F1, then need CPT.
Mike needs CPT.
So, he must be on F1.
(Affirming the consequent!)



Results: FOLIO (3 COT Failure Modes)
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1. COT concludes something different than it suggests ("No reason to believe X" => "X is false").
2. COT makes incorrect logical deductions.
3. COT fails to find complex paths of reasoning.

If on F1, then need CPT.
Mike needs CPT.
So, he must be on F1.
(Affirming the consequent!)

Greyhound → Boeing 707 
↓ 
Plane 
↓
Empty 
↓ 
Cannot transport passengers 
↓ 
Not an airline 
↓ 
No Greyhound planes 
↓ 
Contradiction

6 steps of reasoning needed!



Results: FOLIO (LINC vs COT Quantitative)
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• Compared to COT, LINC has better precision on True/False prediction (93% vs 81%)
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Results: FOLIO (LINC vs COT Quantitative)
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• Compared to COT, LINC has better precision on True/False prediction (93% vs 81%)
• LINC has worse recall (60% vs 75%)
• LINC outputs "Uncertain" more: NL to FOL is a lossy process (but does not add false information)!



Results: FOLIO (LINC vs COT Quantitative)
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LINC and COT mispredict on different examples!
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Conclusions
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• LINC improves reasoning accuracy across almost all tested scenarios.

• Generalizes to larger premise sets than seen in in-context examples.

• Complements Chain-of-Thought prompting with different error patterns.



Limitations
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• Find ways to combine COT and LINC.

• Integrate prover feedback in a refinement loop.

• Explore fine-tuning and other training techniques to boost reasoning.



Questions?
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Backup Slides
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FOL BNF Grammar
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Prover9 called twice to get complete info!
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Prover9 Algorithm
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Prover9 Algorithm
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• Given-clause loop: maintain usable/sos; pick given clause, infer with usable, simplify, retain; stop on 
empty clause or exhaustion.

• Ordered resolution: resolve only on maximal complementary literals (after unification) to prune search 
yet stay complete (with fairness).

• Demodulation: use oriented equalities as one-way rewrites (big →small) to simplify clauses (no 
branching).

• Paramodulation: use an equality parent to replace equal subterms at eligible/maximal positions, 
producing new clauses.



Current State
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Current State

91Empowering LLMs with Logical Reasoning. Cheng et. Al. IJCAI 2025
Divide and translate: Compositional first-order logic translation and verification for complex logical reasoning. Ryu et. Al. ICLR'25

First translates the raw NL 
paragraph to atomic NL 
subsentences with their 
logical dependency 
structure, then translates 
to the target SL!



Current State
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Empowering LLMs with Logical Reasoning. Cheng et. Al. IJCAI 2025
Divide and translate: Compositional first-order logic translation and verification for complex logical reasoning. Ryu et. Al. ICLR'25
Verus-LM: a versatile framework for combining LLMs with symbolic reasoning. Callewaert et. Al. ICLP 2025

Introduces a self-
refinement step that uses 
feedback from the 
reasoning engine to correct 
erroneous logical 
statements.
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• Process-oriented prompting: show your work, then do more work; write out steps, explore and 
compare alternative chains, self-check with roles, and consolidate before answering

• Symbolic-aware prompting: translate to formal structure, decompose by true dependencies, 
expand implied rules, apply deductions, and verify the final answer
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• Rule-driven data generation for reasoning: use formal logic rules or AMR structures to synthesize NL + 
proof traces and target weak rules for FT/ICL (LogicAsker, ALT, AMR-LDA; deeper chains help).

• Symbolic-guided process learning: imitate or integrate solvers/logic layers so models learn stepwise 
reasoning, not just answers (LoGiPT, DiLA, Unigram).
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