Verifying PINNS

SHAURYA GOMBER AVALJOT SINGH DEBANGSHU BANERJEE

Problem Statement

Problem Statement

Problem Statement

Testing

Verification

Verification

Interval Arithmetic

Interval Arithmetic

Interval Arithmetic

Residual Error

Residual Error

Fully connected, ReLU, tanh

Intervals,Derivative IntervalsDouble Derivative Intervals

Results – Residual Error

.

Results – Residual Error

Results – Residual Error

What Now?

Improved Training

Standard Training

Random points sampled from input space

Adversarial Training

Pick worst performing point in a local region

Adversarial Training

Pick worst performing point in a local region

Adversarial !!!

Finding Adversarial Points - PGD

Projected Gradient Descent

Residual Error – Adversarial Training

Residual Error - Comparison

Residual Error - Comparison

Certified Training

Over-approximated loss of a local region

Certified Training

Over-approximated loss of a local region

Interval arithmetic

Certified Training

