
-DATA DRIVEN APPROXIMATION OF ABSTRACT TRANSFORMERS -

Shaurya Gomber
 1st yr MS CS

 UIUC

Contact: sgomber2@illinois.edu

Topics

1. Abstract Transformers (Quick Recap)

2. Motivation

3. Problem Setting

4. Technique

5. Future Work

ABSTRACT TRANSFORMERS

Abstract Domains

● Domain of values different from our program states.

● Used to keep track of the program states succinctly.

● Some examples: Interval, Zonotopes, Octagon, Polyhedra

ABSTRACT INTERPRETATION

Abstraction Function

ABSTRACT INTERPRETATION

Concretization Function

ABSTRACT INTERPRETATION

Galois Connection

ABSTRACT INTERPRETATION

Introduction

ABSTRACT TRANSFORMERS

● Consider: + operation, code line z = x + y, Interval Domain

● If x# = [a, b] and y# = [c, d], we need a operator +# that gives us z#

z# = x# +# y# = [a, b] +# [c, d] = [a+b, c+d]

● We call +# the abstract transformer for +

● Abstract Transformers are needed for:

○ All operations possible in the language (+, -, abs)

○ Lattice operations like join and meet (to handle if-else, while etc.)

Soundness

ABSTRACT TRANSFORMERS

● Necessary condition for transformer correctness.

● If [a, b] +# [c,d] = [e, f], then +# is sound if:

∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞]

[a + c - 5, b + d + 6]

[a + c + 1, b + d]

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES

[a + c - 5, b + d + 6]

[a + c + 1, b + d]

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES NO

[a + c - 5, b + d + 6]

[a + c + 1, b + d]

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES NO

[a + c - 5, b + d + 6] YES

[a + c + 1, b + d]

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES NO

[a + c - 5, b + d + 6] YES NO

[a + c + 1, b + d]

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES NO

[a + c - 5, b + d + 6] YES NO

[a + c + 1, b + d] NO <don’t care>

[a + c, b + d]

Precision

ABSTRACT TRANSFORMERS

● Important for the practical applicability of abstract interpretation.

● Can be thought of as the measure of succinctness of the transformer’s output.

Consider [a, b] +# [c,d] = [e, f], +# is sound if ∀ x ∈ [a, b] , ∀ y ∈ [c, d] => x + y ∈ [e, f]

Now consider the following possible transformers:

SOUND? PRECISE?

[-∞, ∞] YES NO

[a + c - 5, b + d + 6] YES NO

[a + c + 1, b + d] NO <don’t care>

[a + c, b + d] YES YES

WHY APPROXIMATE THE TRANSFORMERS?

Polyhedra Domain

MOTIVATION

● Very powerful as it maintains all the complex relations between
program variables.

● Stronger than the non-relational and weakly relational domains
that we have seen in this course.

● Able to prove complex properties like y < 2x easily.

Q. If this is so powerful, why do we even need other domains?

Polyhedra Domain Issue

MOTIVATION

Ans. Because the sound and most precise transformers for
many of its operations are computationally very expensive!

Consider this:

● After an if-else block, there will be 2 such polyhedras.

● That is, we need to join two such figures.

● Time complexity: exponential in #vertices and #edges.

● Have heard of a case where it took ~3 days to compute
one such join.

So, what next?

HOW TO APPROXIMATE SUCH COSTLY TRANSFORMERS?

Example

 PROBLEM SETTING

● Interval Domain

● Goal: Approximate the transformer for the abs method.

a.l : Lower bound of the specified interval a
a.r : Upper bound of the specified interval a

Setting: What do we have
● Data: Input Output examples (yes, we will have to run the costly transformer once to get the dataset)

 (abs#([l, r]) = [absl, absr])

l r absl absr

-2417.2257 8425.0984 0 8425.0984

9395.7928 9454.3504 9395.7928 9454.3504

-5975.7502 -2391.1638 2391.1638 5975.7502

● Soundness Constraint: forall x, (l <= x <= r) => (absl <= abs(x) <= absr)

● Precision Measure: | absr - absl |

 PROBLEM SETTING

Goal

Use:

1. Data
2. Soundness constraint
3. Precision measure

to approximate the abstract transformer!

Q2. We have data and want to learn something out of it, whom do we call?

 PROBLEM SETTING

Q1. Why approximate the transformer?
Ans. An efficient (quick) way to get the transformed values (which are sound most of the times)

Goal

Use:

1. Data
2. Soundness constraint
3. Precision measure

to approximate the abstract transformer!

Q2. We have data and want to learn something out of it, whom do we call?
Ans. Neural Networks (obviously!)

 PROBLEM SETTING

Q1. Why approximate the transformer?
Ans. An efficient (quick) way to get the transformed values (which are sound most of the times)

Naive Way

TECHNIQUE

● Give it only the entire dataset
● Ask it to memorize
● Penalize it with MSE loss

l

r

Ground Truths
(MSE Loss)

absl

absr

Problem with Naive Way

TECHNIQUE

● Network asked only to memorize the data.

● Is oblivious to the soundness requirement.

● Learns a function in its hypothesis space
that reduces the MSE loss well (so precision is fine).

● But it can not be used as a transformer because of
the poor soundness results!

l r absl absr Sound?

7101.075 9944.418 7101.167 9943.465 NO (7101.075)

4796.38 8357.237 4796.295 8356.702 NO (8357.237)

-2620.969 2744.13 -1.009 2744.396 YES

-434.58 721.211 -0.380 722.148 YES

-3504.81 -320.015 319.993 3506.315 YES

8486.121 8783.284 8486.524 8782.35 NO (8783.284)

2175.55 9850.599 2174.945 9850.119 NO (9850.599)

9762.237 9903.25 9760.715 9902.053 NO (9903.25)

4894.421 9665.724 4894.224 9665.011 NO (9665.724)

8864.991 9757.781 8865.355 9756.688 NO (7101.075)

Results on 10 random inputs (Soundness measure: 30%)

Problem with Naive Way

TECHNIQUE

Training Logs:

Our tool

TECHNIQUE

l

r

Ground Truths
(MSE Loss)

absl

absr

Soundness Constraint as Loss
(DL2 Loss)

We use the differentiable loss presented in the DL2:
Deep Learning with Differential Logic paper
(Fischer et. al).

● Converted Soundness Constraint to DL2 loss
using these rules:

w
1 w

2

● Adam optimizer & Projected
Gradient Descent (PGD) used to
solve the optimization problem.

● w
1

 = 1 ; w
2

= 2000-3000 as we need
to enforce soundness (almost as a
hard constraint)

https://files.sri.inf.ethz.ch/website/papers/icml19-dl2.pdf

l r absl absr Sound?

7101.075 9944.418 7101.167 9943.465 NO (7101.075)

4796.38 8357.237 4796.295 8356.702 NO (8357.237)

-2620.969 2744.13 -1.009 2744.396 YES

-434.58 721.211 -0.380 722.148 YES

-3504.81 -320.015 319.993 3506.315 YES

8486.121 8783.284 8486.524 8782.35 NO (8783.284)

2175.55 9850.599 2174.945 9850.119 NO (9850.599)

9762.237 9903.25 9760.715 9902.053 NO (9903.25)

4894.421 9665.724 4894.224 9665.011 NO (9665.724)

8864.991 9757.781 8865.355 9756.688 NO (7101.075)

Results on 10 random inputs (Soundness measure: 30%)

Results from our tool

TECHNIQUE

● Network asked to:
○ Memorize data (MSE Loss)
○ Follow Soundness Constraint (DL2 loss)

● Learnt network can be used (with some
modifications) as a transformer because of the good
soundness results!

● Precision can be improved? Yes, maybe!

l r absl absr Sound?

1239.651 4900.376 1236.163 4931.959 YES

-2335.049 4984.283 -38.855 5018.712 YES

-24.584 4452.161 30.151 4468.344 NO (0)

-9360.782 4349.862 -129.254 9522.770 YES

-7158.819 1744.48 -99.675 7291.221 YES

-1247.04 2484.397 -21.911 2503.420 YES

-6495.725 3592.935 -90.908 6606.015 YES

-4720.175 5626.187 -66.002 5681.784 YES

-1631.28 2022.999 -25.116 2043.962 YES

-751.029 -210.949 185.281 770.471 YES

Results on 10 random inputs (Soundness measure: 90%)

Results from our tool

TECHNIQUE

Training Logs:

Endgame

TECHNIQUE

Costly Transformer

inputs output_net Sound?

output_net
Yes

No

output_costly

Applicability of this tool would depend upon the percentage of sound answers suggested by the network!!

FUTURE WORK

Future Work

FUTURE WORK

● Add mechanisms to enforce Precision while training.

This means that we would have three kinds of losses:
○ MSE Loss from data
○ Loss from soundness constraint
○ Loss from precision measure

● Use the framework on serious examples like Polyhedra join.

This would involve:
○ Collecting training data
○ Implementing polyhedra join soundness as a DL2 constraint
○ Adding some notion of precision
○ Incorporating it with present verifiers to check efficacy on real world benchmarks.

Backup Slides

404 Not Found

