
Neural Abstract Interpretation

1

Shaurya Gomber, Gagandeep Singh

FM/SE Seminar, Spring 2024
 UIUC

Presented by:
Shaurya Gomber (sgomber2@Illinois.edu)
 2nd yr MS CS, UIUC

mailto:sgomber2@Illinois.edu

Abstract Interpretation
• Widely used to analyze programs, neural networks, and real-world

systems.

• Concrete Domain 𝒞 →	 Abstract Domain 𝒜

• “Suitable finiteness” of 𝒜 makes analysis
tractable

2

Odd

Even

Concrete Domain
ℤ

93
51

1

8
36

10
Abstract Domain
𝒜!"#$/&''

Abstraction Function

3

[4, 7]

[-2, 2]

Concrete Domain
ℤ

4
7

10

2

-2

Abstract Domain
𝒜($)"

1
[11, 134]

[-13, 45]

[0, 9]

0

5
6

90

α

α

𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛	(𝛼): 	 𝒫 𝒞 → 𝒜

Concre2za2on Func2on

4

[4, 7]

[-2, 2]

Concrete Domain
ℤ

4
7

10

2

-2

Abstract Domain
𝒜($)"

1
[11, 134]

[-13, 45]

[0, 9]

0

5
6

90

𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝛼 : 	 𝒜 → 𝒫 𝒞

4
5

10

-2-1

90

6
7

20

1
γ

γ

Abstract Domains

5

Intervals
𝑥 ∈ −1.2, 3.4
𝑦 ∈ [3, 8.2]

Octagon Polyhedra
 ±x ± 𝑦 ≤ 𝑐!

	 	 	 	±𝑥 ≤ 𝑑!
	 	 	 	±𝑦 ≤ 𝑒!

𝑐"𝑥" + 𝑐#𝑥# +⋯𝑐$𝑥$ ≤ p

Precision increases but so does complexity

Figures: A Miné 2006
1. A. Mine, “The octagon abstract domain,”
2. P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints among variables of a program,”

https://www-apr.lip6.fr/~mine/publi/article-mine-HOSC06.pdf
https://arxiv.org/pdf/cs/0703084.pdf
https://dl.acm.org/doi/10.1145/512760.512770

Abstract Transformers

Operator 𝑜𝑝	in 𝒞 → Need an equivalent '𝑜𝑝	in 𝒜	

6<𝑜𝑝 denotes the Abstract Transformer for operator 𝑜𝑝.

x + y →	[1, 2] #+	[3, 4]

𝑧 = 𝑎𝑏𝑠 𝑥 → 0𝑥 = −9, 15 → 𝑧̂ = 6𝑎𝑏𝑠(0𝑥)

o𝑜* 𝑜+
o

𝑥 = 2𝑥 + 3𝑦
𝑜 ,

⊔

Abstract Transformers transform abstract elements as result of operations in the concrete domain!

Octagon Join

Interval Add

Interval Abs

Octagon Affine Assignment

Soundness and Precision of Transformers

7

Concrete Domain
𝒞

Abstract Domain
𝒜

𝛾(𝑧)

𝑜𝑝(𝛾 𝑧)

𝑜𝑝

𝑧

𝛾

!𝑜𝑝

$𝑜𝑝(𝑧)

Soundness: 𝑜𝑝 𝛾 𝑧 ⊑% 	𝛾(>𝑜𝑝(𝑧))

𝛾

Precision: 𝛾 >𝑜𝑝 𝑧 ∖ 𝑜𝑝 𝛾 𝑧

𝛾('𝑜𝑝(𝑧))

Most-precise (“Best”) Transformer !𝑜𝑝#

8

Concrete Domain
𝒞

Abstract Domain
𝒜

𝛾(𝑧)

𝑜𝑝(𝛾 𝑧)

𝑜𝑝

⊑ 𝒜

𝑧

𝛾

𝛼

𝛼(𝑜𝑝 𝛾 𝑧)

!𝑜𝑝

$𝑜𝑝(𝑧)

• 𝛼(𝑜𝑝 𝛾 𝑧) is the known as the
best transformer.

• 𝛼(𝑜𝑝 𝛾 𝑧) can not be directly
computed using 𝑧.

• Need to ensure soundness always.

• Most precise implementations are computationally expensive: Octagon Join (cubic), Polyhedra Join (exponential)

• Intricate optimizations like octagon decompositions [1] are needed to make them scalable.

• Some hand-crafted transformers are imprecise: affine assignment in the Octagon domain.

• A fundamental trade-off between soundness, precision, and cost of the transformers.

Issues with current abstract transformers

9

Tedious to implement as:

1. G. Singh, M. P ̈uschel, and M. T. Vechev, “Making numerical program analysis fast,”
2. G. Singh, M. P ̈uschel, and M. T. Vechev, “Fast polyhedra abstract domain,”

Motivates the need to automatically learn sound and precise abstract transformers to ease development effort!

https://elina.ethz.ch/papers/PLDI15-Octagon.pdf
https://elina.ethz.ch/papers/POPL17-Polyhedra.pdf

General Optimization Problem

10

<𝑜𝑝 = min
-∈ℱ

H
0∈𝒜

ℒ2 <𝑜𝑝# 𝑎 , 𝑓 𝑎 	

Find the sound and most-precise abstract transformer <𝑜𝑝	for 𝑜𝑝 from a set of func]ons ℱ

𝑠. 𝑡. H
0∈𝒜

ℒ4 𝑜𝑝, 𝑎, 𝑓 𝑎 	 = 	 0

 SOUNDNESS

• ℒ4 𝑜𝑝, 𝑎, 𝑓 𝑎 = 0 if 𝑓(𝑎) is a sound output
of 𝑓 on 𝑎.

• Ensures f is sound on all 𝑎 ∈ 𝒜

 PRECISION

• ℒ2 𝑎*, 𝑎+ measures how “big” 𝑎+ is as compared to 𝑎*
• Ensures that learned transformer is closest to <𝑜𝑝# in precision.

This problem is hard to solve because:
• 𝒜	has an infinite size!
• <𝑜𝑝# just a specification -> ℒ2 𝑎*, 𝑎+ thus hard to compute!
• ℒ4 𝑜𝑝, 𝑎, 𝑓 𝑎 checks for soundness: 𝑜𝑝 𝛾 𝑎 ⊑5 	𝛾 𝑓 𝑎

 -> via SMT
 -> expensive and not differentiable!

Neural Abstract Transformers

11

Neural Abstract Transformers: neural networks that serve as abstract transformers.

This also separates us from the present body of works like [2].
These use symbolic methods to learn transformers from a DSL.

May not be able to learn complex transformers like affine assignment in octagon domain.

1. K. Hornik, M. Stinchcombe, and H. White. 1989. Multilayer feedforward networks are universal approximators

2. Pankaj Kumar Kalita, Sujit Kumar Muduli, Loris D’Antoni, Thomas Reps, and Subhajit Roy.
2022. Synthesizing abstract transformers

To make the solving feasible, we propose supervised and unsupervised relaxations of the
above problem.

• Data-driven approach to learn transformers.
• Ability of neural networks to effectively approximate complex functions [1]

allows us to learn sound and precise transformers easily.

https://www.sciencedirect.com/science/article/abs/pii/0893608089900208
https://arxiv.org/pdf/2105.00493.pdf
https://arxiv.org/pdf/2105.00493.pdf

Benefits of Neural Transformers

12

1. Automa]c genera]on of transformers with varying soundness and precision eases development costs.

2. The neural transformers can act as fast and some]mes even more precise replacements for the
current hand-craeed transformers. Unsound cases can be handled by resor%ng to hand-cra/ed
transformers' outputs.

3. Neural transformers being differen8able allow for differen]able abstract interpreta]on.
This allows us to pose and solve interes]ng problems like invariant genera]on as gradient-guided
learning methods.

Neural Abstract Transformers generated by our supervised and unsupervised approaches have the
following benefits:

Now, we describe the supervised and unsupervised approaches to learn these transformers

Supervised Learning Relaxa2on

13

• Dataset 𝒟 = 𝑋6 , 𝑦6 for an abstract transformer <𝑜𝑝	
• Use current hand-crafted transformers to collect data.

min
S
Ε T',U' ∼𝒟[𝛼	 ∗ ℒW

X 𝑦Y, 	A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′(𝑦Y, A	𝑜𝑝∗(𝑋Y; 𝜃))]

Neural Abstract Transformer <𝑜𝑝∗(𝑋6; 𝜃) can be learned using:

Soundness Ensuring Loss Precision Ensuring Loss

Supervised Learning Relaxation (Soundness)

14

min
S
Ε T',U' ∼𝒟[𝛼	 ∗ ℒW

X 𝑦Y, 	A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′(𝑦Y, A	𝑜𝑝∗(𝑋Y; 𝜃))]

• ℒ4, 𝑎*, 𝑎+ = 0 implies 𝑎+ over-approximates 𝑎*, i.e. 𝑎+ ⊑8 	 𝑎*	or	𝛾 𝑎+ ⊑5 	𝛾 𝑎*

• Otherwise ℒ4, 𝑎*, 𝑎+ gives a differentiable proxy for size of the set 𝛾 𝑎+ ∖ 	𝛾 𝑎*

• Guides model’s output <𝑜𝑝∗ 𝑋6; 𝜃 to over-approximate ground truth (𝑦6)
which ensures soundness!

Intervals: ℒ4, 𝑙*, 𝑢* , [𝑙+, 𝑢+] = max 𝑙+ 	− 𝑙*, 0 + max(𝑢* − 𝑢+, 0)

ℒ4, 1, 2 , [0, 5] = 0

ℒ4, 1, 6 , [2, 4] = (2-1) + (6-4) = 3

Guides model to expand [2, 4] to fit
[1, 6] inside it

Supervised Learning Relaxa2on (Precision)

15

min
S
Ε T',U' ∼𝒟[𝛼	 ∗ ℒW

X 𝑦Y, 	A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′(𝑦Y, A	𝑜𝑝∗(𝑋Y; 𝜃))]

• ℒ2	, 𝑎*, 𝑎+ 	gives a differentiable approximation of how “big” 𝑎+	is as compared to 𝑎*.

• Needed to maintain precision; only soundness loss can lead to results like [−∞,∞]

Intervals: ℒ:, 𝑙*, 𝑢* , [𝑙+, 𝑢+] = 𝑢+ 	− 𝑙+ − (𝑢* 	− 𝑙*)

ℒ𝒫, 1, 2 , [0, 5] = 5 – 1 = 4

[0,5] a sound
approximation for [1,2],
but is bigger!

Guides model to reduce [0, 5]
to match size of [1, 2]

Supervised Learning Relaxation (Tradeoff)

16

min
S
Ε T',U' ∼𝒟[𝛼	 ∗ ℒW

X 𝑦Y, 	A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′(𝑦Y, A	𝑜𝑝∗(𝑋Y; 𝜃))]

Soundness Weight Precision Weight

Weights can be tweaked to get neural transformers with varying
 soundness and precision!

 Soundness-Precision Tradeoff
 Soundness Loss tries to increase the output size.
 Precision Loss tries to decrease the output size.

Mul]-objec]ve learning problem with conflic]ng objec]ves!

Supervised Learning Results (Interval)

17

Soundness %: Percentage of sound outputs on a test set of 10,000 input-output pairs.

Imprecision: The avg. difference in sizes of intervals produced by the model
 and the ground truth (for SOUND cases).

Soundness increases

Precision decreases

Supervised Learning: Octagons

18

𝑜*: 	 ±𝑣6 ± 𝑣< ≤ 𝑐6<
𝑜+: 	 ±𝑣6 ± 𝑣< ≤ 𝑐6<’

ℒ4, 𝑜*, 𝑜+ =H
6,<

𝑖𝑡𝑒	(𝑐6< 	− 𝑐6<, > 0,	𝑐6<−	𝑐6<, , 0)

Enforces constants of 𝑜+ to be bigger than 𝑜*;
sufficient for soundness

ℒ2, 𝑜*, 𝑜+ =H
6,<

|𝑐6< 	− 𝑐6<′|

Enforces constants of 𝑜+ are closer to 𝑜*;
maintains precision

Neural Octagon Join (3 variables)

𝑜*: 	𝑣* − 𝑣+ ≤ 5
𝑜+: 	𝑣*	−	𝑣+	≤ 3 ℒ4, 𝑜*, 𝑜+ = 5 – 3 = 2

Soundness %: on a test set of 1000 input-output pairs.

Imprecision: average difference between the inequality
constants of the model's output and the ground truth.

Unsupervised Learning Relaxation

19

• Dataset 𝒟 = 𝑋6 for an abstract transformer <𝑜𝑝 for an operator 𝑜𝑝	

min
S
Ε T'	 ∼𝒟[𝛼	 ∗ ℒW

XX 𝑜𝑝,	𝑋Y , A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′′(A	𝑜𝑝∗(𝑋Y; 𝜃))]

Neural Abstract Transformer <𝑜𝑝∗(𝑋6; 𝜃) can be learned using:

Soundness Ensuring Loss Precision Ensuring Loss

Unsupervised Learning Relaxation (Soundness)

20

min
S
Ε T'	 ∼𝒟[𝛼	 ∗ ℒW

XX 𝑜𝑝,	𝑋Y , A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′′(A	𝑜𝑝∗(𝑋Y; 𝜃))]

Main challenge here is that we do not have ground truth for reference (and over-approximating)

We want that ℒ4,, 𝑜𝑝, 𝑎*, 𝑎+ 	should give 0 if 𝑎+ is a sound output with respect to 𝑜𝑝 on 𝑎*

𝑜𝑝 𝛾 𝑎* ⊑5 	𝛾(𝑎+)

Else, we want ℒ4,, 𝑜𝑝, 𝑎*, 𝑎+ to guide model towards 𝑎+ which
ensures the above condition!

The above condition can be checked by an SMT solver but the 0/1
returned by the solver can not be used to guide the learning.

Unsupervised Learning Relaxation (Soundness)
min
S
Ε T'	 ∼𝒟[𝛼	 ∗ ℒW

XX 𝑜𝑝,	𝑋Y , A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′′(A	𝑜𝑝∗(𝑋Y; 𝜃))]

To tackle this, we introduce the no]on of Maximum Viola8ng Concrete Point (MVCP)

Concrete Domain
𝒞

Abstract Domain
𝒜

𝛾(𝑎!)

𝑜𝑝(𝛾 𝑎!)

𝑜𝑝
!𝑜𝑝

𝛾

𝑎!

𝑎"

𝛾

𝛾 𝑎"

Points that violate 𝑜𝑝 𝛾 𝑎* ⊑5 	𝛾 𝑎+

Violating point farthest from 𝛾 𝑎+

𝑀𝑉𝐶𝑃(𝑜𝑝, 𝑎*, 𝑎+)

ℒ4,, 𝑜𝑝, 𝑎*, 𝑎+ = 𝐷(𝑀𝑉𝐶𝑃 𝑜𝑝, 𝑎*, 𝑎+ , 𝛾 𝑎+)

𝑑∗

for distance metric 𝐷(𝑐, 𝛾(𝑎))

21

Unsupervised Learning Relaxation (Soundness)
min
S
Ε T'	 ∼𝒟[𝛼	 ∗ ℒW

XX 𝑜𝑝,	𝑋Y , A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′′(A	𝑜𝑝∗(𝑋Y; 𝜃))]

To tackle this, we introduce the notion of Maximum Violating Concrete Point (MVCP)

Concrete Domain
𝒞

Abstract Domain
𝒜

𝛾(𝑎!)

𝑜𝑝(𝛾 𝑎!)

𝑜𝑝
!𝑜𝑝

𝛾

𝑎!

𝑎"

𝛾

𝛾 𝑎"

Points that violate 𝑜𝑝 𝛾 𝑎* ⊑5 	𝛾 𝑎+

Violating point farthest from 𝛾 𝑎+

𝑀𝑉𝐶𝑃(𝑜𝑝, 𝑎*, 𝑎+)

ℒ4,, 𝑜𝑝, 𝑎*, 𝑎+ = 𝐷(𝑀𝑉𝐶𝑃 𝑜𝑝, 𝑎*, 𝑎+ , 𝛾 𝑎+)

for distance metric 𝐷(𝑐, 𝛾(𝑎))

22

Unsupervised Learning Relaxation (Soundness)
min
S
Ε T'	 ∼𝒟[𝛼	 ∗ ℒW

XX 𝑜𝑝,	𝑋Y , A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′′(A	𝑜𝑝∗(𝑋Y; 𝜃))]

MVCP and ℒ4′′ example for Interval domain

Consider learning transformer for the 𝑎𝑏𝑠 function.

𝑜𝑝 = 𝑎𝑏𝑠
𝑎* = −10, 15
𝑎+ = [0, 12]

𝑜𝑝 𝑎* = [0, 15]
0 15

𝑎+ = [0, 12]
0 12

𝐷 𝑐, 𝑙*, 𝑢* = v
𝑙* − 𝑐	 𝑖𝑓	𝑐 < 𝑙*
𝑐	 − 𝑢*	 𝑖𝑓	𝑐 > 𝑢*
	0	 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

argmax
>

	 𝐷 𝑐, 0, 12

𝑠. 𝑡	 ∃𝑥. −10 ≤ 𝑥 ≤ 15	 ∧ 	𝑐 = |𝑥|
MVCP Query to solver:

MVCP

Once MVCPs are computed for a batch,
ℒ4,, can be computed as 𝐷(𝑚𝑣𝑐𝑝, 𝛾 𝑎+) ,
which is differen]able!ℒ4,, = 3

23

Unsupervised Learning Relaxa2on (Precision)

24

min
S
Ε T'	 ∼𝒟[𝛼	 ∗ ℒW

XX 𝑜𝑝,	𝑋Y , A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′′(A	𝑜𝑝∗(𝑋Y; 𝜃))]

ℒ'((𝑎 gives a differentiable approximation of the size of 𝑎.

Helps maintain precision by avoiding results like −∞,∞ .

Intervals: ℒ[XX 𝑙~, 𝑢~ = 𝑢~ − 𝑙~

Unsupervised Learning Relaxation (Precision)

25

min
S
Ε T'	 ∼𝒟[𝛼	 ∗ ℒW

XX 𝑜𝑝,	𝑋Y , A𝑜𝑝∗ 𝑋Y; 𝜃 + 𝛽	 ∗ ℒ[′′(A	𝑜𝑝∗(𝑋Y; 𝜃))]

Soundness Weight Precision Weight

Weights can be tweaked to get neural transformers with varying
 soundness and precision!

Unsupervised Learning Results (Interval)

26

Soundness %: Percentage of sound outputs on a test set of 10,000 input-output pairs.

Imprecision: The avg. difference in sizes of intervals produced by the model
 and the ground truth (for SOUND cases).

Soundness increases

Precision decreases

Unsupervised Learning: Octagons

27

𝑜𝑝(𝛾 𝑎*) 𝛾(𝑎+)

Octagon affine assignment 𝑥 = 𝑎𝑥 + 𝑏𝑦

MVCP can be found by encoding
the octagon constraints and
notion of 𝐷 in SMT solver

𝐷 𝑐, 𝑜 :	maximum perpendicular distance from
 non-satisfying constraints.

What next?

28

Our results show the efficacy of our methods to learn neural abstract transformers.

They are generated automatically and can be plugged into downstream tasks in place of hand-crafted transformers.

However, using neural transformers opens up one more avenue: differentiable abstract interpretation.

Differen2ability use case:
Differen2able Learning of Loop Invariants

29

Consider a while program: 𝒫 = 𝑤ℎ𝑖𝑙𝑒 𝐵 	𝑑𝑜	𝐶	𝑜𝑑

Say we need to find octagonal invariants (of the form ±𝑥 ± 𝑦 ≤ 𝑐)

𝑂6$" is a valid octagon loop invariant if:

𝑂6$6) ∈ 𝑂6$" 	∧ 	 (�𝐶 𝑂6$" �∩ 	𝐵 	∈	 𝑂6$")

�𝐶	and �∩	are abstract transformers for C and ∩ (𝐶𝑜𝑛𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑤𝑖𝑡ℎ	𝑔𝑢𝑎𝑟𝑑)

Now, say we train neural transformers �𝐶∗	and �∩∗	for C and ∩

We can initialize invariant as a random octagon 𝑜 and do gradient descent using:

ℒWX 𝑂Y�Y�, 𝑜 + ℒW′(L𝐶∗ 𝑜 #∩∗ 𝐵 , 𝑜)

ℒ4, 𝑜*, 𝑜+ =H
6,<

𝑖𝑡𝑒	(𝑐6< 	− 𝑐6<, > 0,	𝑐6<−	𝑐6<, , 0)

Differentiability use case:
Differentiable Learning of Loop Invariants

30

The differentiable search succeeds in finding valid invariants!

x = 100;
 y = 150;
 while (y <= 600)
{
 x = x + y;
 y = 2*y;
}

Some generated invariants:

1. 𝑦 ≥ 65.51, 𝑥	 − 𝑦 ≤ −49.95, −𝑥 − 𝑦 ≤ 74.89
2. 𝑥	 − 𝑦 ≤ 13.239

Note that if 𝑥*, 𝑦* enter the loop body
𝑥+ = 𝑥* + 𝑦* and 𝑦+ = 2 ∗ 𝑦*

𝑥+ − 𝑦+ = 𝑥* 	− 𝑦*

Future Works

31

• Evaluate the speed and precision benefits of neural transformers.

• Explore other avenues to use differentiable abstract interpretation.

• Better representation for octagon (like graphs and using GNNs)

Questions?

32

Backup Slides

33

Galois Connection

34

Concrete Domain
𝒞

Abstract Domain
𝒜

𝑥
𝛼(𝑥)

⊑
𝒞 ⊑
𝒜

𝑧𝛾(𝑧)

𝛼

𝛾

𝛼 𝑥 ⊑𝒜	 𝑧	 ⟺ 	𝑥 ⊑𝒞 	𝛾(𝑧)	

Abstrac2on introduces imprecision

35

[4, 7]

[-2, 2]

Concrete Domain
ℤ

4
7

10

2

-2

Abstract Domain
𝒜($)"

1
[11, 134]

[-13, 45]

[0, 9]

0

5
6

90

α

α

𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛	(𝛼): 	 𝒫 𝒞 → 𝒜

[4, 7]

[-2, 2]

Concrete Domain
ℤ

4
5

10

-2-1

Abstract Domain
𝒜($)"

[11, 134]

[-13, 45]

[0, 9]

90

6
7

γ

20

1
γ

𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛	(𝛼): 	 𝒫 𝒞 → 𝒜

