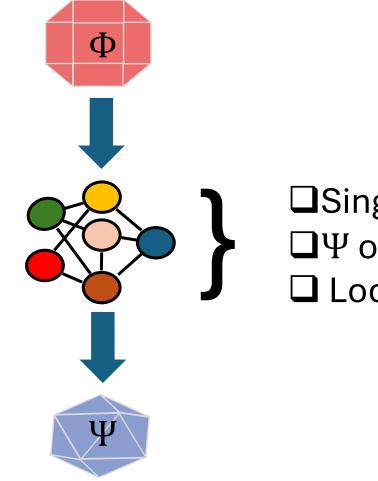
Multi-Network Relational Verification and Certifiable Training

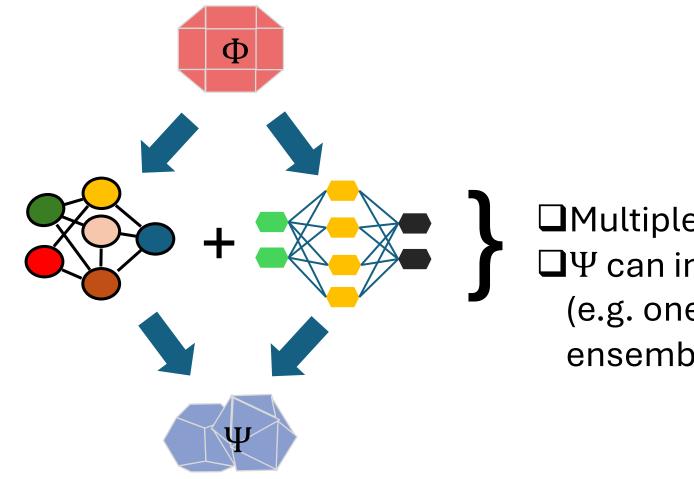
Debangshu Banerjee Shaurya Gomber Calvin Xu

Motivation


Current Gap: Existing verifiers for individual networks fail for multinetwork systems

□ Ensemble models for enhanced reliability and performance

- □ Conformal prediction systems with a classification network
- **□** Equivalence checks between a pair of models


How to design scalable verifiers for multi-network systems ?

Formulation: Classical DNN Property

□Single Network
 □Ψ only includes conjunctions
 □ Local Robustness

Formulation: DNN Hyper-properties

tolerate failures
Multiple Networks
Ψ can include disjunctions (e.g. one network in an ensemble can fail)

Power to

Formulation: DNN Hyper-properties

Neural Networks $NN_1, NN_2, \dots NN_K$ where $NN_i: \mathbb{R}^{n_o^i} \to \mathbb{R}^{n_l^i}$

Input Specification

$$\Phi(x_{1}, \cdots x_{k}): \bigwedge_{i=1}^{K} x_{i} \in X_{i} \land \Phi_{cross}(x_{1}, \cdots, x_{K})$$

$$Individual Network Constraints$$

$$X_{i} = \{ x \in \mathbb{R}^{n_{o}^{i}} s. t. || x - x_{i_{0}} ||_{\infty} \leq \epsilon \}$$

$$Input Relational Constraints$$

$$Constraints over inputs to capture their relationships$$

Output Specification

$$\Psi(NN_1(x_1), \cdots NN_k(x_k)): \bigvee_{i=1}^M \psi_i \quad where \quad \psi_i = \bigwedge_{j=1}^N (C_{i,j}^T NN_a(x_a) \ge b_{i,j})$$

Verification Problem $\forall x_1 \cdots \forall x_k \ \Phi(x_1, \cdots x_k) \Rightarrow \Psi(NN_1(x_1), \cdots NN_k(x_k))$

Formulation: Examples

Ensemble Local Robustness: If $f(NN_1(x), NN_2(x) \cdots, NN_K(x)) = \ell$

 $\forall x' \cdot || x' - x ||_{\infty} \le \epsilon \Longrightarrow (f(NN_1(x'), NN_2(x') \cdots, NN_K(x')) = \ell)$

Conformal Prediction Robustness: Classification network NN_{class} and threshold network NN_t

 $\forall x' \cdot || x' - x ||_{\infty} \le \epsilon \Longrightarrow score(y, NN_{class}(x')) > NN_t(x')$

Network Equivalence Verification: Networks *NN*₁ and *NN*₂ around input *x*

 $\forall x' \cdot ||x' - x||_{\infty} \leq \epsilon \Longrightarrow |C^T N N_1(x') - C^T N N_1(x')| \leq \epsilon$

Methodology: Verification

1. Handle multiple networks from different architecture

Convert parametric linear approximations
 Learn the parameters jointly over multiple networks

2. Handle disjunctive output specification

 $\Box \forall x. \Psi_1(x) \land \Psi_2(x) \equiv \forall x. \Psi_1(x) \land \forall x. \Psi_2(x)$

 $\Box \forall x. \Psi_1(x) \lor \Psi_2(x)$ Do not distribute

Methodology: Verification

2. Handle disjunctive output specification

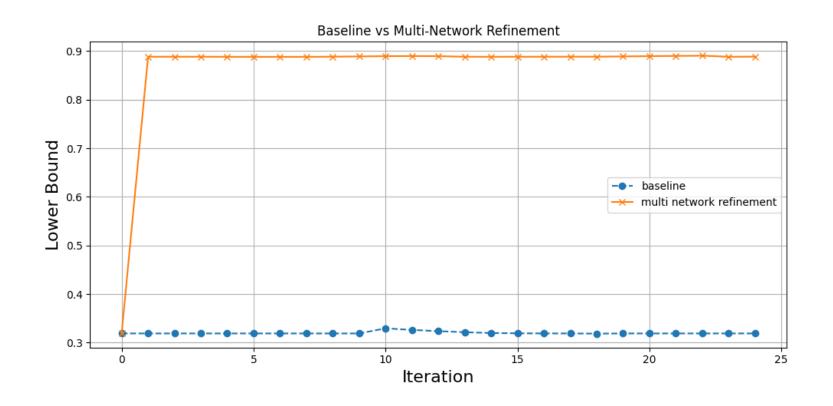
 $\Box \forall x. \Psi_1(x) \land \Psi_2(x) \equiv \forall x. \Psi_1(x) \land \forall x. \Psi_2(x)$

$\Box \forall x. \Psi_1(x) \lor \Psi_2(x)$ Do not distribute

Use parametric linear approximation $(C_i)s$ to formulate an equivalent Linear Program min t s.t. $C_1^T x \le t$, $C_2^T x \le t$, $\Psi_i(x) = C_i^T x \ge 0$

Write the max-min dual formulation

Find the closed form of the inner minimization problem


Methodology: Training

Output Spec: $\Psi = \psi_1 \lor \psi_2$

 \Box Train ensemble with **non-overlapping adversarial examples** from ψ_1 and ψ_2

Ensures overall correctness even when some properties are not satisfied

Results For Disjunctive $\boldsymbol{\Psi}$

For disjunctive output specification. The proposed bound refinement produces a tighter bound.

Experiments from an ensemble of COLT, SABR, CITRUS networks with $\epsilon = 3/255$

Results For Ensembles

ε	Net 1 Training	Net 1 Accuracy	Net 2 Training	Net 2 Accuracy	Net 3 Training	Net 3 Accuracy	Ensemble
2/255	COLT	50	CITRUS	54	SABR	58	56
3/255	COLT	43	CITRUS	43	SABR	44	43
4/255	COLT	41	CITRUS	32	SABR	29	30
0.25/255	Standard	54	DiffAl	51	PGD	68	61
0.5/255	Standard	48	DiffAl	50	PGD	65	59
2.0/255	Standard	1.0	DiffAl	45	PGD	36	24

