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ABSTRACT

Abstract interpretation is a widely used method for the formal analysis and veri-
fication of programs and neural networks. However, designing efficient abstract
transformers for widely-used relational domains such as Octagon and Polyhedra is
challenging as one needs to carefully balance the fundamental trade-off between
the cost, soundness, and precision of the transformer for downstream tasks. Fur-
ther, scalable implementations involve intricate performance optimizations like
Octagon and Polyhedra decomposition. Given the inherent complexity of abstract
transformers and the proven capability of neural networks to effectively approxi-
mate complex functions, we envision and propose the concept of Neural Abstract
Transformers: neural networks that serve as abstract transformers. The proposed
Neural Abstract Interpretation (NAI) framework provides supervised and unsu-
pervised methods to learn efficient neural transformers automatically, which re-
duces development costs. We instantiate the NAI framework for two widely used
numerical domains: Interval and Octagon. Evaluations on these domains demon-
strate the effectiveness of the NAI framework to learn sound and precise neural
transformers. An added advantage of our technique is that neural transformers are
differentiable, unlike hand-crafted alternatives. As an example, we showcase how
this differentiability allows framing invariant generation as a learning problem,
enabling neural transformers to generate valid octagonal invariants for a program.

1 INTRODUCTION

Abstract Interpretation (Cousot & Cousot, 1977a) is a popular technique for formally analyzing
the properties of programs (Cousot et al., 2005; Cousot & Cousot, 2000), neural networks (Singh
et al., 2019; Gehr et al., 2018), and complex real-world systems (Dams et al., 1997). Abstract Inter-
pretation works by soundly approximating the concrete semantics of the system within a “suitably
finite” domain, called the abstract domain. The “finiteness” of the abstract domain allows us to
reason about all possible executions of the systems efficiently. Analyzing programs in the abstract
domain requires that the set of states in the concrete domain are mapped to their abstraction in the
abstract domain. Similarly, it requires functions that transform one abstract state into another, cor-
responding to operations in the concrete domain. These functions, known as Abstract Transformers,
must soundly approximate their concrete counterparts to ensure the correctness of the analysis. The
choice of the abstract domain used for analysis is based on the specific properties to be proven. For
example, in the analysis of numerical programs, abstract domains such as Octagons (Mine, 2001)
and Polyhedra (Cousot & Halbwachs, 1978) are beneficial for verifying intricate program properties
because they account for inter-variable dependencies, unlike the Interval domain (Cousot & Cousot,
1977b), which solely represents variable bounds.

Designing efficient abstract transformers for expressive relational domains is challenging, requiring
a careful balance of the fundamental trade-off between soundness, precision, and efficiency of the
transformer. Sound and precise abstract transformers for operations like join in the Polyhedra and
Octagon domains are computationally expensive. Polyhedra join requires computing the convex
hull, an exponential-time operation in the number of variables and constraints (Singh et al., 2017),
while Octagon join involves closure computation with a cubic-time complexity (Mine, 2001). Using
these implementations makes the program analysis task expensive and, thus, less scalable. Various
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Figure 1: The NAI framework provides supervised and unsupervised learning methods to train
neural networks to serve as abstract transformers for abstract interpretation

performance optimizations like Octagon and Polyhedra decomposition (Singh et al., 2015; 2017)
have been proposed to make these transformers scalable. However, implementing these optimiza-
tions is highly complex, demanding significant manual effort and increasing the risk of soundness
bugs. For certain operators, such as affine assignment in the Octagon domain, designing efficient
abstract transformers without losing precision is challenging. As a result, practical implementations
often favor efficiency over precision, ultimately reducing the overall precision of program analysis.

To tackle the challenges of designing efficient abstract transformers, we propose a data-driven learn-
ing approach to automate their generation. Inspired by the ability of neural networks to learn com-
plex functions (Hornik et al., 1989; Cybenko, 1989), we introduce Neural Abstract Interpretation
(NAI), a framework that learns Neural Abstract Transformers – neural networks that serve as the
abstract transformers. The NAI framework offers three key advantages: (1) Automatic Transformer
Generation – it leverages supervised and unsupervised learning to train neural abstract transformers,
reducing manual effort while providing mechanisms to balance the soundness-precision trade-off;
(2) Fast and Precise Transformers – neural transformers can surpass hand-crafted ones in speed and,
in some cases, precision, enhancing scalability while defaulting to traditional methods when they are
unsound; and (3) Differentiability – unlike conventional transformers, neural abstract transformers
are differentiable, enabling gradient-based learning for tasks like invariant generation and paving the
way for differentiable abstract interpretation. Our contributions are as follows:

1. We pose the problem of learning sound and precise abstract transformers as an optimization
problem (Sec. 2) and point out why the general optimization problem is hard to solve.
We introduce a general framework NAI (Sec. 2) that proposes supervised (Sec. 2.1) and
unsupervised (Sec. 2.2) learning approaches as a relaxation of the general optimization
problem. To the best of our knowledge, we are the first work to propose such relaxation,
thus enabling the learning and use of neural abstract transformers.

2. We instantiate our NAI framework for the Interval and the Octagon domain (details in Ap-
pendix C). We demonstrate the effectiveness of our supervised and unsupervised learning
methods by learning sound and precise neural transformers for operators in the Interval and
Octagon domains (Sec. 3.1). We also demonstrate how the differentiability of the neural
transformers can help us pose and solve the task of generating valid octagonal invariants
for loop programs as a learning problem (Sec. 3.2).

2 NAI FRAMEWORK

Abstract transformer corresponding to an operation op in the concrete domain (C) is a function
ôp : A → A that captures the effect of applying op to concrete states corresponding to an abstract
state in A. ôp is sound if it over-approximates the output of op, i.e. ∀a ∈ A. α(op(γ(a))) ⊑A ôp(a)
where α : C → A is the abstraction function, γ : A → C is the concretization function and a ⊑A b
means that b is an over-approximation of a. In other words, ôp is sound if it produces results that
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over-approximate the effect of op in the abstract domain (more details in Appendix A). The precision
of ôp is essentially indicative of the degree of over-approximation due to ôp and can be quantified
by some measure of the size of the abstract element computed by ôp. Precision is important as any
abstract transformer that returns ⊤ is technically sound but is not very useful for practical settings.
We ideally need sound transformers that are as precise as possible.

Now, consider the task of learning the sound and most-precise abstract transformer ôp from a set of
functions F for an operator op. As defined by Cousot & Cousot (1977a), we represent the “most-
precise abstract transformer” for op as ôp#. The goal then is to learn ôp such that its output is sound
for all possible inputs in the abstract domain, and the output is as close to the most-precise abstract
transformer ôp#. This can be posed as the following optimization problem:

ôp = argmin
f∈F

∑
a∈A

LP (ôp
#(a), f(a)) s.t.

∑
a∈A

LS(op, a, f(a)) = 0 (1)

where:

1. LS(op, a, f(a)) measures the soundness of f . It returns 0 if f(a) soundly approximates op
on a, i.e., op(γ(a)) ⊑C γ(f(a)), where γ is the concretization function, and 1 if f(a) is
unsound. Thus,

∑
a∈A LS(a, f(a)) = 0 ensures f is sound for all a ∈ A.

2. LP (a1, a2) measures precision and can be any metric to measure how “big” is a2 com-
pared to a1. For intervals, this can be the difference in interval sizes. Minimizing∑

a∈A LP (ôp
#(a), f(a)) finds an abstract transformer closest in precision to the most pre-

cise one, ôp#. If ôp# ∈ F , then it is the optimal solution.

Inherent complexity. While this approach to learning abstract transformers is correct, solving the
optimization problem is challenging. First, the abstract domain is often infinite, making it difficult
to satisfy both soundness and precision for all elements. Second, Cousot & Cousot (1977a) provides
only a specification of ôp# but no concrete method to compute it, thus complicating the computation
of LP . Finally, computing LS involves finding counterexamples to soundness via SMT, which is
computationally expensive and non-differentiable, making gradient-based learning infeasible.

To address the complexity of the learning problem, we leverage neural networks’ ability to approx-
imate complex functions (Hornik et al., 1989; Cybenko, 1989) and reframe the design of sound
and precise abstract transformers as a more tractable learning task. In the following sections, we
introduce supervised and unsupervised relaxations to achieve this.

2.1 SUPERVISED LEARNING OF NEURAL TRANSFORMERS

In this section, we present a supervised learning approach for training neural abstract transformers,
specifically useful for operators that have hand-crafted sound and precise abstract transformers.

Learning Problem. Given a dataset D = {Xi, yi} representing input-output of an abstract trans-
former ôp (for concrete operator op) in some abstract domain A, we pose the learning of the neural
abstract transformer ôp∗ as the following optimization problem:

min
θ

E(Xi,yi)∼D [α ∗ L′
S(yi, ôp

∗(Xi; θ)) + β ∗ L′
P (yi, ôp

∗(Xi; θ))] (2)

which is based on the following components:

1. Soundness Loss L′
S : Given ground truth outputs yi of the abstract transformer, soundness is

ensured by enforcing that the output of the model ôp∗(Xi; θ) over-approximates yi, i.e., yi ⊑A

ôp∗(Xi; θ) (by Theorem 1). We define L′
S such that L′

S(a1, a2) = 0 implies a1 ⊑A a2, which
holds if γ(a1) ⊑C γ(a2). If L′

S(a1, a2) ̸= 0, it provides a differentiable approximation of γ(a1) \
γ(a2), guiding the model to minimize L′

S and ensure over-approximation. For example, in the
Interval domain, if the ground truth is [0, 5] and the model predicts [0, 4], the soundness loss is
5 − 4 = 1, encouraging the model to expand the upper bound. Minimizing L′

S(yi, ôp
∗(Xi; θ))

ensures the neural transformer’s output over-approximates the ground truth, enforcing soundness.
Unlike LS(op, a, f(a)) in Eq. 1, which requires encoding op’s semantics, L′

S is differentiable and
avoids explicit dependence on op, leveraging the supervised setting with known ground truths.
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2. Precision Loss L′
P : Given a measure M(a) of the size of γ(a) for a ∈ A, L′

P (a1, a2) quantifies
how much larger M(a2) is compared to M(a1). While ensuring γ(a1) ⊑C γ(a2) guarantees
soundness, an overly imprecise transformer (e.g., always outputting ⊤A) is unhelpful for analysis.
To enforce precision, L′

P (a1, a2) ≥ 0 provides a differentiable estimate of over-approximation
given by max(M(a2) − M(a1), 0). In the Interval domain, the precision loss can be the interval
size difference, with M([l, u]) = max(u− l, 0). Minimizing L′

P (yi, ôp
∗(Xi; θ)) ensures the neural

transformer’s output stays closer to the ground truth in precision. Unlike LP (ôp
#(a), f(a)) in

Eq. 1, this formulation avoids computing ôp# for precision assessment, relying instead on ground
truth outputs to measure and minimize imprecision.

3. Soundness & Precision Weights: α, β control the required degree of soundness and precision,
allowing adjustment based on the specific downstream task for which the neural transformer is used.

Appendix C demonstrates that L′
S(a1, a2) and L′

P (a1, a2) can be computed efficiently and differ-
entiably for operations in abstract domains like Intervals and Octagons.

2.2 UNSUPERVISED LEARNING OF NEURAL TRANSFORMERS

We now propose an unsupervised learning algorithm for training neural abstract transformers, which
is useful when precise hand-crafted transformers are difficult to implement. Unlike the supervised
approach, it does not require ground truth outputs but instead defines soundness and precision losses
based on the semantics of the concrete operator op.

Learning Problem. Given a dataset D = {Xi} representing a set of possible inputs to the abstract
transformer ôp (for concrete operator op) in some abstract domain A, we pose the learning of the
neural abstract transformer ôp∗ in an unsupervised manner as the following optimization problem:

min
θ

EXi∼D [α ∗ L′′
S(op, Xi, ôp

∗(Xi; θ)) + β ∗ L′′
P (ôp

∗(Xi; θ))] (3)

which is based on the following components:

1. Soundness Loss L′′
S : The key challenge is the absence of ground truth outputs for computing

soundness loss. An abstract state a2 is sound for an operation op on a1 if it over-approximates the
effect of op, formally op(γ(a1)) ⊑C γ(a2). Thus, the soundness loss L′′

S(op, a1, a2) should be 0 if
this condition holds and otherwise approximate the size of op(γ(a1)) \ γ(a2). However, checking
this typically requires SMT solvers, which are non-differentiable and unsuitable for guiding learning.
To address this, we first define the distance D(c, a) between a concrete point c and an abstract state
a, measuring how far c is from being included in γ(a). For instance, in the Interval domain, if
a = [2, 4] and c = 7, then D(c, a) = 7− 4 = 3, with D(c, a) = 0 when c ∈ γ(a). Now, we define
the maximum violating concrete point (MVCP) for (op, a1, a2) as:

Definition 1. For a tuple (op, a1, a2), where op is a concrete operator and a1, a2 ∈ A, a maximum
violating concrete point (MVCP) is the state cm ∈ C that belongs to op(γ(a1)) but is missing from
γ(a2). It is the farthest such point, measured by D(c, a2). If op(γ(a1)) ⊆ γ(a2), meaning a2 is a
sound abstraction, no MVCP exists.

MVCP (op, a1, a2) = argmax
c∈op(γ(a1))\γ(a2)

D(c, a2) (4)

Using MVCP, the soundness loss is defined as:

L′′
S(op, a1, a2) = D(MVCP (op, a1, a2), a2) (5)

Minimizing L′′
S(Xi, ôp

∗(Xi; θ)) ensures learning a sound transformer by iteratively reducing the
distance between ôp∗(Xi; θ) and the MVCP. Fig 2 (left) illustrates this process: the MVCP (green
dot) is the farthest missing point from the concretization (red region). Minimizing the distance d∗

guides the model to include MVCPs, ensuring soundness. For example, in the interval domain,
while learning ˆabs

∗
for the abs operator with a1 = [−10, 15], the model output a2 = [0, 12] results

in an unsound abstraction since abs(γ(a1)) = [0, 15] should be included. The MVCP is cm = 15,
yielding L′′

S(cm, a2) = 15− 12 = 3, guiding the model toward a sound transformer.
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Figure 2: Illustration of the Maximum Violating Concrete Point (MVCP) guiding the learning of
neural transformer. In the left figure, a2 is unsound as op(γ(a1)) ̸⊑C γ(a2), with the MVCP (green
dot) lying outside γ(a2). Minimizing the loss ensures γ(a2) includes the MVCP. In the right figure,
for abs, if a1 = [−10, 15], the output must contain [0, 15] for soundness. Since a2 is unsound, the
MVCP cm = 15 defines the soundness loss.

2. Precision Loss L′′
P : Consider a measure M(a) representing the size of γ(a) for an element

a ∈ A. In the unsupervised setting, where ground truth outputs are unavailable, precision is enforced
by directly minimizing the size M(a) of the model’s output. Specifically, L′′

P (a)(≥ 0) provides a
differentiable approximation of M(a). For instance, in the Interval domain, the size of [l, u] is given
by M([l, u]) = max(u − l, 0), which can be minimized to improve precision. Thus, minimizing
L′′
P (ôp

∗(Xi; θ)) guides the neural transformers to produce more precise outputs.

3. Soundness & Precision Weights: α, β control the required degree of soundness and precision,
allowing adjustment based on the specific downstream task for which the neural transformer is used.

Appendix C demonstrates that the SMT query to find MVCP (op, a1, a2) can be easily implemented
for various operators in the Interval and Octagon domain. Also, the functions D(c, a) and L′′

P (a)
can be computed easily and differentiably for these domains. Beyond enabling efficient and differ-
entiable transformers, unsupervised learning offers the added advantage of eliminating the need for
hand-crafted transformers. While supervised learning still relies on existing precise transformers,
unsupervised learning generates them automatically using only domain functions D(c, a), L′′

P (a),
and the semantics of MVCP (op, a1, a2). This is particularly beneficial for complex operations like
affine assignment in the Octagon domain, where efficient and precise hand-crafted transformers do
not exist but can now be learned as neural transformers.

2.3 SOUNDNESS PRECISION TRADE-OFF

In both supervised and unsupervised learning, the loss has two components: soundness and pre-
cision. Optimizing solely for soundness can produce overly large outputs, while precision loss
enforces tighter approximations, creating a trade-off. Soundness loss expands outputs to cover the
sound region, whereas precision loss shrinks them to maintain precision, making it a challenging
multi-objective optimization problem. By tuning soundness-precision weights (α and β), neural
transformers can be learned with varying degrees of soundness and precision based on the specific
downstream task. In traditional verification tasks, where soundness is crucial, unsound cases can
default to hand-crafted transformers, as soundness checks are relatively simple.

3 EVALUATION

3.1 SOUNDNESS AND PRECISION OF NEURAL ABSTRACT TRANSFORMERS

In this section, we evaluate the soundness and precision of neural transformers learned via super-
vised and unsupervised approaches within the NAI framework. We train transformers for the abs
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Weights (α, β) Interval Abs Interval Join

(Soundness, Precision) Soundness (%) Size Difference Soundness (%) Size Difference

(-, -) 20.03 4.44 3.88 0.16
(1, 1) 26.39 1.57 32.34 40.16
(2, 1) 47.43 5.74 40.53 25.70
(5, 1) 66.88 11.70 63.10 43.58
(7, 1) 84.02 10.39 73.07 113.78

(10, 1) 97.72 18.41 89.24 116.31
(50, 1) 99.99 40.63 99.57 191.72

Table 1: Neural Interval Transformers for Abs and Join trained using the supervised approach

Weights (α, β) Octagon Join

(Soundness, Precision) Soundness (%) Edge Count Difference Constants Sum Difference

(-, -) 0.0 - -
(10, 100) 10.3 0.087 76.16
(20, 100) 25.2 0.075 88.89
(50, 100) 32.5 0.181 101.53

(100, 100) 46.4 0.157 113.70
(150, 100) 60.9 0.323 135.59
(450, 100) 72.0 0.502 154.60
(700, 100) 79.2 0.963 175.29

Table 2: Neural Octagon Transformer for Join trained using the supervised approach

and join operators in the Interval domain (Sec A.3.1) and the join and affine assignment operators
in the Octagon domain (Sec A.3.2).

Datasets. For interval abs and join, as well as octagon join, training and testing data are
generated by randomly sampling input intervals and octagons and computing ground truth outputs
using hand-crafted transformers. For octagon affine assignment, where no precise hand-crafted
alternative exists, training and testing data are generated by only sampling random input octagons
and affine assignments, as ground truth is not required in the unsupervised setting.

Evaluation Metrics. Soundness (%) denotes the percentage of sound outputs generated by the
learned neural transformers on a test set (of size 10,000 for intervals and 1,000 for octagons). Since
soundness ensures correctness but not precision, different metrics are used to assess precision for
interval and octagonal transformers. For interval transformers, where ground truth is available, we
use Size Difference, the average difference between the sizes of model output intervals and ground
truth intervals, considering only the sound cases. A smaller size difference indicates a more precise
model. For octagon transformers, precision is harder to define due to the lack of a straightforward
notion of octagon size. Thus, we use the following metrics:

• Supervised setting: Since ground truth octagons are available, we compare the learned
transformer’s output to the true octagon. We measure Edge Count Difference, the average
difference in the number of inequalities between the learned and ground truth octagons, and
Constants Sum Difference, the average difference in the sum of inequality constants. Larger
differences in either metric indicate a looser, less precise abstraction, whereas smaller val-
ues suggest that the output is closer to ground truth in precision.

• Unsupervised setting: Without ground truth octagons, we assess precision based on the
structure of the learned output. We use Edge Count, the average number of inequalities
in the transformer’s output, and Constants Sum, the sum of inequality constants. Fewer
inequalities and a higher sum indicate a less precise abstraction.

Supervised Learning. Using the loss functions from Sections C.1.2 and C.2.2, we train neural
transformers for both the Interval and Octagon domains. For the Interval domain, we train trans-
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Weights (α, β) Interval Abs Interval Join

(Soundness, Precision) Soundness (%) Size Difference Soundness (%) Size Difference

(-, -) 20.03 4.44 3.91 26.80
(20, 10) 25.04 4.29 38.99 164.61
(30, 10) 63.04 25.86 53.65 219.08
(50, 10) 85.96 36.95 93.03 255.93
(75, 10) 100 73.17 97.95 277.70

Table 3: Neural Interval Transformers for Abs and Join trained using the unsupervised approach

Weights (α, β) Octagon Join

(Soundness, Precision) Soundness (%) Edge Count Constants Sum

(-, -) 0.0 - -
(10, 1000) 1.5 8 1601.85

(100, 1000) 23.6 4.2 799.85
(450, 1000) 41.5 3.1 405.79
(550, 1000) 59.2 2.0 305.12
(600, 1000) 77.3 1.0 198.19

Table 4: Neural Octagon Transformer for affine assignment trained using the unsupervised approach

formers for abs and join operations on 5,000 samples each, while for the Octagon domain, we train
a join transformer on 10,000 samples. Tables 1 and 2 present the results, where the first column lists
the soundness and precision weights (α, β), and the first row reports the performance of a randomly
initialized network. In both cases, random networks fail to generate sound outputs, whereas our
supervised approach successfully learns sound and precise transformers. Increasing the soundness
weight α improves soundness but reduces precision, as evidenced by the increasing difference in the
number of inequalities and the sum of constants in the octagons generated by the learned transform-
ers compared to the ground truth, and by the increasing size difference in the case of intervals. This
demonstrates the framework’s ability to balance the soundness-precision trade-off and learn neural
transformers to varying levels of precision and generalization.

Unsupervised Learning. We use the loss methods described in Sections C.1.3 and C.2.3 to train
neural transformers for the interval and octagon domains using 1000 samples each. The dataset
size is limited due to the computational cost of computing MVCPs at each iteration, which involves
expensive SMT solver calls. Despite this, Tables 3 and 4 confirm that our approach successfully
learns sound and precise transformers. For interval transformers, we train for the abs and join
operations. Due to the lack of ground truth in the unsupervised setting, models tend to favor sound
but imprecise solutions. To counter this, we assign a higher precision weight (10) to achieve results
comparable to supervised learning. During training, precision is enforced using the sizes of the
output intervals, whereas evaluation compares the sizes of the learned intervals to the ground truth
intervals. Similarly, for octagon affine, we use a higher precision weight (1000), and precision
is enforced during training using the size of output octagons. Increasing the soundness weight α
improves soundness but reduces precision, as seen in fewer inequalities in the octagons generated
by learned transformers (and increasing size difference in case of intervals). This again highlights
the ability of our framework to balance the soundness-precision trade-off.

3.2 DIFFERENTIABLE LEARNING OF LOOP INVARIANTS

This section highlights the advantage of our differentiable neural abstract transformers in learning
loop invariants. We frame the task of discovering valid inductive octagonal invariants for a loop
program P as a learning problem. Consider a loop program P = while(β) do C od, where the
effective abstract transformer of C is defined as Ĉ = ôpn ◦ ôpn−1 · · · ◦ ôp1, with ôpi representing
the abstract transformer for the ith statement in C. If Oinit approximates the initial states of P , an
octagon Oinv is a valid invariant if:
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(Oinit ⊆ Oinv) ∧ (Ĉ( ˆconj(Oinv, β)) ⊆ Oinv) (6)

where ˆconj is the abstract transformer approximating the conjunction of an octagon with β. Using
our NAI framework, we construct neural approximations ôp∗i for each transformer ôpi, yielding the
effective neural transformer for the loop body Ĉ∗ as Ĉ∗ = ôp∗n ◦ ôp∗n−1 · · · ◦ ôp∗1. This enables
searching for Oinv by minimizing:

L′
S(Oinit, o) + L′

S(Ĉ∗( ˆconj
∗
(o, β)), o) (7)

x = 100;
y = 150;
while (y <= 600) {

x = x + y;
y = 2*y;

}

Figure 3: Example loop program

where L′
S(o1, o2) (Sec C.2.2) enforces o1 ⊆ o2. Starting from

random octagons, gradient descent can be used to minimize
Eq. 7 and generate candidate invariants, which can then be ver-
ified against Eq. 6 via an SMT solver. For example, consider
the loop in Fig. 3. The initial state x = 100, y = 150 is rep-
resented by the octagon Oinit = {x ≥ 100,−x ≤ −100, y ≥
150,−y ≤ −150}. Training a neural transformer for affine
assignments in the octagon domain and using Eq. 7, we syn-
thesize non-trivial invariants such as:

1. {y ≥ 65.514, x− y ≤ −49.951,−x− y ≤ 74.897}
2. {x− y ≤ 13.239}

These invariants capture the loop’s structural property that x−y remains constant, as updates follow
x2 = x1 + y1 and y2 = 2y1, preserving x2 − y2 = x1 − y1. The emergence of these constraints
demonstrates that our neural transformers effectively capture loop semantics while maintaining dif-
ferentiability to guide invariant synthesis. More precise invariants can be learned with improved
initialization and precision-aware learning. However, this example highlights the effectiveness of
differentiable neural transformers in a practical setting of finding valid octagonal loop invariants.

4 RELATED WORKS

Works like Kalita et al. (2022); Lim & Reps (2013) use symbolic methods to synthesize abstract
transformers from a predefined DSL, requiring explicit concrete semantics. However, many oper-
ations, such as affine assignments in the Octagon domain, cannot be easily represented with sim-
ple DSL functions. In contrast, our NAI framework leverages neural networks’ ability to approx-
imate complex functions (Hornik et al., 1989; Cybenko, 1989), adopting a data-driven approach
to learn neural transformers with varying soundness and precision. While Bielik et al. (2017) ap-
plies counterexample-guided learning to static analysis, their analyzers remain symbolic and non-
differentiable. Similarly, He et al. (2020) learns a neural policy to optimize abstract states but does
not replace hand-crafted transformers with neural networks.

Recent advancements in neural surrogates (Renda et al., 2021; Esmaeilzadeh et al., 2012) have fo-
cused on accelerating program execution (Mendis et al., 2019; Munk et al., 2020) and estimating
program gradients (Renda et al., 2020; She et al., 2019). Our NAI framework lifts this idea from
concrete to abstract programs by composing learned neural abstract transformers for each program
operation to obtain a neural surrogate of the abstract program. These surrogates can improve veri-
fication speed and precision while enabling gradient-guided learning for various applications.

5 CONCLUSION AND FUTURE WORKS

This paper introduced Neural Abstract Transformers, neural networks trained to serve as abstract
transformers within the NAI framework, which supports both supervised and unsupervised learning.
We demonstrated its ability to automatically learn sound and precise transformers for the Interval and
Octagon domains and leveraged their differentiability for invariant generation via gradient-guided
learning. Beyond invariant generation, neural transformers can serve as fast and, in some cases,
more precise alternatives to hand-crafted transformers in analysis tasks. However, the current tensor
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representation of octagons in NAI (Section C.2.1) is inefficient, requiring 4n2 values for n variables,
making it impractical for large programs. Exploring graph-based representations, such as GNNs,
to encode inequalities could improve efficiency. While we instantiated NAI for the Interval and
Octagon domains, extending it to more expressive domains such as Zonotopes and Polyhedra is a
promising direction. Additionally, this work demonstrates the potential of differentiable abstract
interpretation, enabling new applications in optimal program synthesis and other analysis tasks.
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Andreas Munk, Adam Åšcibior, AtÄ±lÄ±m GÃ¼neÅŸ Baydin, Andrew Stewart, Goran Fernlund,
Anoush Poursartip, and Frank Wood. Deep probabilistic surrogate networks for universal sim-
ulator approximation. In International Conference on Probabilistic Programming (PROBPROG
2020), Cambridge, MA, United States, 2020. URL https://probprog.cc/.

A. Renda, Y. Chen, C. Mendis, and M. Carbin. Difftune: Optimizing cpu simulator param-
eters with learned differentiable surrogates. In 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 442–455, Los Alamitos, CA, USA, oct 2020.
IEEE Computer Society. doi: 10.1109/MICRO50266.2020.00045. URL https://doi.
ieeecomputersociety.org/10.1109/MICRO50266.2020.00045.

Alex Renda, Yi Ding, and Michael Carbin. Programming with neural surrogates of programs. In
Proceedings of the 2021 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Onward! 2021, pp. 18–38, New York, NY, USA,
2021. Association for Computing Machinery. ISBN 9781450391108. doi: 10.1145/3486607.
3486748. URL https://doi.org/10.1145/3486607.3486748.

Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman Jana. Neuzz:
Efficient fuzzing with neural program smoothing. pp. 803–817, 05 2019. doi: 10.1109/SP.2019.
00052.
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A BACKGROUND ON ABSTRACT INTERPRETATION

This section begins with a brief introduction to Abstract Interpretation, highlighting the concepts of
Abstraction and Concretization functions and their required relationship through the Galois connec-
tion to ensure the soundness of abstract interpretation. We then introduce Abstract Transformers,
discussing their soundness and precision—key aspects for understanding the problem we address.
The section concludes with an overview of commonly used abstract numerical domains, two of
which, Interval and Octagon, are used in our evaluation.

A.1 ABSTRACT INTERPRETATION

Proving various properties of programs and establishing their correctness is undecidable in general.
So, to make the verification process tractable, program analyzers typically work on an abstraction
of the program, which over-approximates the semantics of the original program. This technique is
known as Abstract Interpretation (Cousot & Cousot, 1977a). Abstract Interpretation is the theory
of the sound approximation of the semantics and states of programs (Concrete Domain C) through
elements belonging to an alternative domain, commonly referred to as the Abstract Domain (A). The
core concept of Abstract Interpretation is that it effectively “partially executes” the program within
the abstract domain A. The abstract domain A is chosen in a way such that it is “suitably finite”.
This “finiteness” ensures that analyzing the program’s semantics and states within the domain A
provides a concise yet sound analysis of all potential program executions. This enables us to provide
formal guarantees concerning the presence or absence of certain bugs and the verification of specific
properties.

Abstraction and Concretization Functions. The abstraction function α : P(C) → A maps sets
of elements in the concrete domain to values in the abstract domain. On the other hand, the con-
cretization function γ : A → P(C) maps abstract elements back to the set of concrete elements
they represent. For instance, the abstraction and the concretization functions used for abstract-
ing integers Z using the interval abstract domain AIntv are illustrated in Fig 4. In this case,
α maps sets of integers to the smallest interval that contains all integers from the set. For e.g.,
α({−2, 1, 2}) = [−2, 2]. Conversely, γ maps the intervals to the largest set of integers that the
interval abstracts. So, γ([−2, 2]) = {−2,−1, 0, 1, 2}. This also demonstrates the loss of precision
that arises when using abstractions as the set {−2, 1, 2} was abstracted using [−2, 2], which, when
concretized, gives {−2,−1, 0, 1, 2}. This set has all integers from the original set, but also new
integers that are added because of the loss of precision introduced when concretizing the abstract
elements.

Galois Connection. We require that our analysis using abstract interpretation is sound, i.e., the
analysis in the abstract domain safely over-approximates the semantics of the concrete domain. This
can be ensured if the concrete and abstract domains are connected by the Galois Connection, which
is defined as follows:
Definition 2. Let PC = (P(C),⊑C) be the poset on the power set of states in the concrete domain
C and PA = (A,⊑A) be the poset on the set of states in the abstract domain A, then α and γ are
connected by the Galois connection iff:

∀x ∈ P(C). ∀z ∈ A. α(x) ⊑A z ⇐⇒ x ⊑C γ(z) (8)

Intuitively, this means that α and γ respect the orderings of P(C) and A as illustrated in Fig 5. The
following directly follows from the above definition (by substituting z = α(x)):

∀x ∈ P(C). x ⊑C γ(α(x)) (9)

This means that, for the soundness of the analysis, the set of concrete states obtained by concretizing
the abstraction of any set should at least contain that set. The rest of the states not there in the original
set lead to the imprecision discussed above.

11

https://doi.org/10.1145/3290354


Published at the VerifAI Workshop at ICLR 2025

Figure 4: Abstraction and Concretization Functions to abstract integers in the interval domain. It
also demonstrates the loss of precision introduced by concretizing back the abstract elements as the
set returned after concretizing [−2, 2] has elements that were not there in the original set.

Figure 5: Galois Connection
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Figure 6: Soundness of Abstract Transformer ôp

A.2 ABSTRACT TRANSFORMERS

Analyzing programs in the abstract domain requires functions that transform elements in the abstract
domain as a result of operations applied in the concrete domain. Such functions are known as Ab-
stract Transformers. Abstract Transformer corresponding to an operation op in the concrete domain
(C) is a function ôp : A → A that captures the effect of applying op to concrete states corresponding
to an abstract state in A.

Soundness of Abstract Transformers. For the analysis to be sound, the abstract transformer ôp
should be sound, i.e., it should over-approximate the output of the concrete operator op. When the

powerset of concrete states P(C) is related to A by a Galois connection P(C)
γ

⇆
α

A, the soundness

condition for ôp can be mathematically defined as:

∀z ∈ A. α(op(γ(z))) ⊑A ôp(z) (10)

This means that if we start from any abstract state z and perform the following:

1. Concretize it to get the set of concrete states represented by it: γ(z).
2. Get the concrete states obtained by applying op on those concrete states: op(γ(z)).
3. Get the abstraction for the set of concrete states obtained in Step 2: α(op(γ(z))).

Then the value returned by the abstract transformer ôp should always over-approximate
α(op(γ(z))), because intuitively, α(op(γ(z))) represents the smallest abstract element that cov-
ers all possible concrete values that can be generated by op. Cousot & Cousot (1977a) refer to
α(op(γ(z))) as the most-precise abstract transformer ôp# (or the “best transformer for op”). So,
any abstract transformer for operator op is sound if it over-approximates ôp#.

Given that α and γ are related by the Galois connection (Eq 8), the soundness condition in Eq. 10
can be re-written only in terms of γ as follows:

∀z ∈ A. op(γ(z)) ⊑C γ(ôp(z)) (11)

We will be using this definition of the soundness of abstract transformers in this work.

Precision of Abstract Transformers. Soundness of abstract transformers is a necessary condition
for sound analysis using abstract interpretation. However, sound abstract transformers can be naively
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defined by always returning ⊤ (top) as the output of the abstract transformer. The top element of a set
(lattice) is the greatest element in the set. Intuitively, this means that the abstract transformer always
returns the abstract state that corresponds to all possible concrete states (the complete set C). Clearly,
such transformers will always maintain soundness. However, the significant imprecision that results
makes it less useful for subsequent analysis tasks. For practical applications, it is necessary for the
transformer to be both sound and as precise as possible. The precision of ôp is essentially indicative
of the degree of over-approximation due to ôp and can be quantified by some measure of the size of
the abstract element computed by ôp.

A.3 NUMERICAL ABSTRACT DOMAINS

Numerical abstract domains abstract a set of numbers. While analyzing programs, these sets of
numbers can be the possible values that the program variables can take. Numerical abstract domains
can be used to prove various properties of numerical programs. Next, we introduce some commonly
used numerical domains.

A.3.1 INTERVAL DOMAIN

In the Interval domain, a set of numbers is abstracted by the smallest interval that contains those
numbers. For e.g, the set {−1.2, 2.3, 4.9, 2} will be abstracted by the interval [−1.2, 4.9]. If a
program has n variables, then we would have n intervals where the ith interval would abstract the
set of possible values of the ith variable. The interval domain, thus, is a non-relational domain, as
the relationship between the variables is not maintained due to the independent representation as
intervals. Consider a simple program with two statements: x = a + b ; y = a − b. If the initial
interval for a and b are [1, 2], then the resulting interval for x will be [2, 4] and for y, it will be [−1, 1]
(given by [1, 2] + [−2,−1]). The final state x ∈ [2, 4] and y ∈ [−1, 1] consists of state where x = 4
and y = 1. But note that this is impossible in the program as if x = 4, a, and b have to be 2, and
thus y has to be 0. However, the Interval domain does not maintain the relationship between the
variables and treats them independently. This is also why it is very imprecise (as seen in Fig 7).

Abstract transformers for the interval domain operate on intervals. For e.g., if the program has
a statement z = abs(x), then the abstract transformer for abs (given by ˆabs) would take in
an interval [l1, u1] and return a new interval [l2, u2] such that it contains absolute of all values
in [l1, u1]. For e.g, ˆabs([1, 3]) would return [1, 3], ˆabs([−4,−1]) would return [1, 4] and that
ˆabs([−10, 2]) would return [0, 10]. It is easy to check that for a general [l, u], ˆabs([l, u]) is given

by [max(max(0, l),−u),max(−l, u)]. Similarly, the abstract transformer for the join of two in-
tervals [l1, u1] and [l2, u2] will return an interval that contains both the intervals and is given by
[min(l1, l2),max(u1, u2)].

A.3.2 OCTAGON DOMAIN

In the octagon domain, the set of possible program states is abstracted using a octagon shape. Given
program variables v1, v2, . . . vn, the octagon shape is represented by a set of inequalities between
the variables where the inequalities can only be of the following types:

1. ±vi ± vj ≤ cij : Between any 2 variables and the coefficients can only be ±1.

2. ±vi ≤ di: Bounds on the positive or negative value of a variable.

The Octagon domain is a weakly relational domain as it allows a limited number of relations to be
captured and, thus, is more precise than the Interval domain.

Abstract transformers for the octagon domain operate on octagons. For example, the join of two
octagons oct1 and oct2 returns an octagon that contains both the octagons.Two octagons can be
joined by taking the max of all inequality constants, i.e., if oct1 has vi − vj ≤ c1 and vi − vj ≤ c2,
then the join will have vi − vj ≤ max(c1, c2). If the inequality is not there in either one of them,
then it would not be in the join as well. However, to keep the results of the join precise, the closure
operation is first performed on both the octagons. The closure operator tightens the inequalities
in an octagon by making the explicit constraints implicit and is frequently used to make octagon
operations precise. However, it is computationally expensive with time complexity O(n3) (Mine
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Figure 7: Abstracting the set of black dots using the different abstract domains (Miné (2006)). The
crosses indicate the extra points that are added in the abstraction and that lead to imprecision. As
we go right, the precision increases but so does the domain complexity.

(2001)). Other transformers, like affine assignment in the octagon domain, take an octagon o and
return the resultant octagon o′ after computing expressions such as z = a ∗ x+ b ∗ y.

A.3.3 POLYGON DOMAIN

In the polygon domain, program states are abstractly represented by a polygon shape, which is
defined through a set of inequalities among program variables v1, v2, . . . , vn. This domain does
not impose constraints on the types of inequalities used, unlike the octagon domain. As such, the
polygon domain qualifies as a relational domain that precisely encapsulates all relationships between
the variables. The lack of restrictions on the inequalities allows for high precision but also leads to
the complexity of abstract transformers, such as the join operation. Specifically, performing a join
in the polyhedra domain involves calculating the convex hull of two polyhedra, a process with an
exponential time complexity relative to the number of variables, expressed as O(nm2n+1

), where n
is the number of variables and m is the number of constraints Singh et al. (2017).

B THEOREMS

Theorem 1. If yi is a sound output of an abstract transformer ôp : A → A on some input xi and
yi ⊑A y′i, then y′i is also a sound output of ôp on xi.

Proof. To prove that y′i is also a sound output of ôp on xi, it is sufficient to prove that
α(op(γ(xi))) ⊑A y′i (by Eq. 10).

α(op(γ(xi))) ⊑A yi (Definition of yi being sound output of ôp by Eq. 10) (12)

yi ⊑A y′i (Given) (13)

α(op(γ(xi))) ⊑A y′i (From (A.1) & (A2)) (14)

Theorem 2. Given two octagons oct1 and oct2, if there is no inequality i that is stricter in oct2,
then oct1 ⊆ oct2.

Proof. To prove this, we prove that if a concrete point c belongs to oct1, it also belongs to oct2.

1. If c belongs to oct1 = [w, e], that means that vi(c) ≤ wi for all i in the set of inequalities
present in oct1, given by ineq1 = {i | ei = 1}.
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2. As there are no inequalities that are stricter in oct2 = [w′, e′], it follows from the definition
of strictness (1) that the of inequalities present in oct2, given by ineq2 = {i | e′i ≥ 0.5} is
a subset of ineq1.

3. So, for all inequalities in oct2, vi(c) ≤ wi holds (from (1) and the fact that ineq2 ⊆ ineq1).

4. As no inequality is stricter in oct2, it also means that wi ≤ w′
i for all i ∈ ineq2.

5. From (3) and (4), we can conclude that ∀i ∈ ineq2, vi(c) ≤ w′
i. This proves that c also

belongs to oct2.

C INSTANTIATION FOR NUMERICAL DOMAINS

In this section, we instantiate our NAI framework for two widely used numerical domains: Inter-
val and Octagon, and show how neural abstract transformers can be learned for operators in these
domains.

C.1 INTERVAL DOMAIN

In the Interval domain [Sec A.3.1], the abstract element is an interval. For example, the set
{1.1, 2.2, 3.15,−1.3} can be abstracted using the interval [−1.3, 3.15]. All possible values for a
variable x in a program can be represented by an interval [a, b]. An element in the Interval domain is
represented by two reals: l and u, where l represents the lower bound of the interval and u represents
the upper bound of the interval.

C.1.1 TENSOR REPRESENTATION OF INTERVALS

An element in the Interval domain can be represented as a tensor of size 2, where the first element
represents the lower bound l of the interval and the second element represents the upper bound u
of the interval. For example, the interval [2.1, 3.5] can be represented as tensor([2.1, 3.5]). Thus,
neural transformers for operators that take n intervals as inputs will have 2*n inputs and two outputs
(representing the output interval). For example, the neural transformer to learn interval join (which
takes two intervals and returns their join) will have four inputs l1, u1, l2, u2 and will output two
numbers lo, uo which represent the output interval [lo, uo].

Figure 8: Neural Transformers for Interval Join and Interval Abs

C.1.2 SUPERVISED LEARNING OF NEURAL INTERVAL TRANSFORMERS

The general supervised learning approach described in Section 2.1 can be used to learn neural trans-
former for the Interval domain by using the following instantiations of the loss components present
in Eq. 2:

1. L′
S(intv1, intv2): Given intervals intv1 = [l1, u1] and intv2 = [l2, u2], this loss has

to enforce that intv2 over-approximates intv1, i.e. intv2 contains all the points present in
intv1. This is only possible if l2 ≤ l1 and u2 ≥ u1. To enforce this, we need to penalize the
model whenever l2 > l1 or u2 < u1. This can be enforced by defining L′

S([l1, u1], [l2, u2])
as following:

L′
S([l1, u1], [l2, u2]) = max(l2 − l1, 0) +max(u1 − u2, 0) (15)
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Note that this loss is always ≥ 0, and will guide the model to decrease l2 and increase u2

when it is more than 0. It is 0 iff l2 ≤ l1 and u2 ≥ u1, which are the required conditions
for soundness.

2. L′
P (intv1, intv2): Given intervals intv1 = [l1, u1] and intv2 = [l2, u2], this loss has to

enforce that the size of intv2 is close to size of intv1. For this, we define the measure of
the size of the interval [l, u] as M([l, u]) = max(u − l, 0). We take the max with 0 as
the interval represented by [l, u] is empty if l > u. Now, using this measure, the precision
condition can be enforced by defining L′

P ([l1, u1], [l2, u2]) as follows:

L′
P ([l1, u1], [l2, u2]) = max(M([l2, u2])−M([l1, u1]), 0)

= max(max(u2 − l2, 0)−max(u1 − l1, 0), 0) (16)

Minimizing L′
P (intv1, intv2) guides the model towards outputting intervals that are closer

to the size of the original intervals, thus maintaining precision.

C.1.3 UNSUPERVISED LEARNING OF NEURAL INTERVAL TRANSFORMERS

The general unsupervised learning approach described in Section 2.2 can be used to learn neural
transformer for the Interval domain by using the following instantiations of the loss components
present in Eq. 3:

1. L′′
S(op, intv1, intv2): As described above, L′′

S depends on the definitions of D(c, a) and
MVCP (op, a1, a2), where c is some element in the concrete domain C and a1, a2 belong
to the abstract domain A.
For the Interval domain, D(c, [l, u]) where c ∈ R, can be defined as:

D(c, [l, u]) =


l − c if c < l

c− u if u < c

0 otherwise
(17)

D(c, [l, u]) captures how “far” is c from [l, u].
Next, we define MVCP (op, a1, a2) for the abs and the join operator:

(a) abs: MVCP (abs, [l1, u1], [l2, u2]) should return c ∈ R that is present in abs([l1, u1])
and is farthest from [l2, u2]. This can be found by solving the following optimization
problem:

argmax
c

D(c, [l2, u2])

subject to ∃x. l1 ≤ x ≤ u1 ∧ c = |x|
(18)

(b) join: MVCP (join, ([l1, u1], [l2, u2]), [l3, u3]) should return c ∈ R that is present in
the join of [l1, u1] and [l2, u2] (i.e., it is present in one of those intervals) and is farthest
from [l3, u3]. This can be found by solving the following optimization problem:

argmax
c

D(c, [l3, u3])

subject to (l1 ≤ c ≤ u1) ∨ (l2 ≤ c ≤ u2)
(19)

The optimization procedures described above can be directly encoded in an SMT solver to
get the MVCPs. L′′

S(op, intv1, intv2) can be then implemented using these MVCPs and
D defined above using the formulation in Eq. 5.

2. L′′
P (intv): We define the measure of the size of the interval [l, u] as M([l, u]) = max(u−

l, 0). We then use this measure directly to define L′′
P ([l, u]) as follows

L′′
P ([l, u]) = M([l, u]) = max(u− l, 0) (20)

Minimizing this would guide the model towards outputting smaller intervals, thus main-
taining precision.
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C.2 OCTAGON DOMAIN

In the Octagon domain [Sec A.3.2], the possible values are abstracted using the octagon shape. If
the program has n variables v1, v2, ...vn, then the octagonal representation of the program state is
given by constraints of the form ±vi ± vj ≤ cij and ±vi ≤ di.

C.2.1 TENSOR REPRESENTATION OF OCTAGONS

To begin learning neural transformers for the octagon domain, it is essential first to convert an
octagon domain element into a tensor. We can represent the octagonal constraints as an array/tensor
consisting only of the inequality constants (cij and di values) if we can define some order on all
the possible constraints. Within the NAI framework, we use the following ordering on the octagon
constraints to encode an octagon as a tensor:

1. We first capture constraints that are on just one variable. Assuming we have an ordering on
variables as above, the first constraint would correspond to v1 <= c1, the second would
correspond to −v1 <= c2, and so on. This amounts to 2 ∗ n values (2 for each variable).

2. Next, we capture the constraints between two variables. For this, we traverse over the
possible pair of variables in the following order: [(v1, v2), (v1, v3) (v1, v4) . . . (v1, vn),
(v2, v3), (v2, v4), . . . (vn−1, vn)]. For a pair (vi, vj), we use the following order for possible
constraints: [(vi + vj), (vi − vj), (−vi + vj), (−vi − vj)]

The number of possible variable pairs is n ∗ (n− 1)/2, and there are 4 possible constraints
for each pair. This amounts to 4 ∗ n ∗ (n− 1)/2 = 2 ∗ n ∗ (n− 1) values.

In total, these leads to 2 ∗ n + 2 ∗ n ∗ (n − 1) = 2n2 inequality constants for an octagon with n
variables. We denote these inequality constants by wi (for the ith inequality in the above-defined
order). However, it is not necessary to have all the inequalities to define the octagon. For instance,
the equation x − y ≤ 1 is also a valid octagon representation. In this case, we do not have the
inequality constants for other inequalities like x + y or x. To tackle this, we also use 2 ∗ n2 in-
equality indicator variables ei = {0, 1} that indicate if the ith inequality is present in the octagon
representation. This final representation then has 4 ∗ n2 values ([w1, w2, . . . wn, e1, e2, . . . en]). We
will use [w, e] as a short-hand notation to denote octagons, where w and e represent the constants
part and the indicators part of the octagon tensor. For the inequalities that are not present, we use a
high constant (K) as a proxy for the inequality constant. Technically, the absence of the inequality
implies that it is less than ∞, and therefore, using a high constant as a substitute is a sensible choice.

Example. Say we have 2 variables in our program: x and y (and we fix this order). Consider
the octagon O = {x ≤ 5,−y ≤ 2, x + y ≤ 10,−x + y ≤ 20}. All possible constraints in the
order defined above would be [x,−x, y,−y, x+ y, x− y,−x+ y,−x− y]. Corresponding to this,
the inequality constants part of the tensor would look like w = [5,K,K, 2, 10,K, 20,K] and the
inequality indicator part would be e = [1, 0, 0, 1, 1, 0, 1, 0]. The final tensor representation would be
a concatenation of w and i as [w, e] = [5,K,K, 2, 10,K, 20,K, 1, 0, 0, 1, 1, 0, 1, 0]

The tensor representation described above captures all the details of the octagons and can now be
passed to neural networks. For example, a neural transformer to learn octagon join for octagon with
n variables each will take 2 octagons as inputs. This means that it will have 8 ∗ n2 inputs (4 ∗ n2 for
each octagon) and will return 4 ∗ n2 outputs that represent the output octagon.

The neural networks for octagon transformers apply sigmoid to the indicator outputs e. So, the e
values returned by the neural octagon transformers are always in the range of 0 to 1. A suitable
threshold (like ≥ 0.5) can then be applied to choose or not choose the inequality in the resultant
octagon. If the ith inequality is chosen, its weight is given by the output wi.

C.2.2 SUPERVISED LEARNING OF NEURAL OCTAGON TRANSFORMERS

The general supervised learning approach described in Section 2.1 can be used to learn neural trans-
former for the Octagon domain by using the following instantiations of the loss components present
in Eq. 2:

1. L′
S(oct1, oct2): Let octagon oct1 be represented as oct1 = [w, e] and oct2 be represented

as oct2 = [w′, e′]. Note that while using L′
S , oct1 is the ground truth, and so its indicators
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Figure 9: Neural Transformers for Octagon Join and Affine Assignment

will be {0, 1} while oct2 is the output from the neural network, and its indicators will be
0 ≤ e′i ≤ 1. As described above, the ith inequality is included in the output octagon if
e′i ≥ 0.5.
Now, this loss has to enforce that oct2 over-approximates oct1, i.e., oct2 should have all the
points covered by oct1. To enforce this, we enforce that no possible inequalities are stricter
in oct2 as compared to oct1. Equality i is stricter in oct2 if one of the following holds:

(a) ei = 1 and e′i ≥ 0.5 and w′
i < wi (both octagons have inequality i but the constant is

less for oct2).
(b) ei = 0 and e′i ≥ 0.5 (Only oct2 has the ith inequality).

Note that oct2 can over-approximate oct1 even if it has some inequalities that are stricter
than those in oct1, as the other inequalities can compensate for this. Therefore, it is not a
necessary condition. However, it is easy to verify that ensuring no inequalities in oct2 are
stricter provides a sufficient condition for soundness (proved in Appendix 2). To enforce
this, we first define the contribution of the ith inequality to soundness loss as follows:

li =


k1 ∗ (wi − w′

i) if e′i ≥ 0.5 and ei = 1 and wi > w′
i

k2 ∗BCELoss(e′i, ei) if e′i ≥ 0.5 and ei = 0

0 otherwise
(21)

Here, k1 and k2 are constants and can be chosen appropriately. BCELoss is the Bina-
ryCrossEntropy Loss. The loss defined above penalizes the model whenever it sees one of
the two conditions for ith inequality being stricter in oct2. In the first case, the model is
penalized if ith inequality is present in both octagons, but oct2 has a smaller constant for
it. In the second case (only oct2 has the ith inequality), the loss guides the output model to
have e′i closer to ei = 0, thus learning models that do not have the ith inequality in their
outputs, which eventually ensures soundness.
L′
S(oct1, oct2) can be computed by taking the mean of lis for all possible constraints, i.e.

(
∑N

i=1 li)/N , where N = 2 ∗ n2 and n is the number of variables in the octagon.

2. L′
P (oct1, oct2): Given two octagons oct1 and oct2, L′

P (oct1, oct2) needs to enforce that
they are close in size. For this, say there is a measure of the size of octagon M(oct).
L′
P (oct1, oct2) should then return a differentiable approximation of the difference in two

measures (M(oct2) −M(oct1)). Octagons are polytopes (can be unbounded also), and it
is, in general, difficult to come up with a measure for the size of the octagon. However, we
can approximate how big octagon oct2 = [w′, e′] is as compared to oct1 = [w, e] using the
following:

(a) Number of inequality constraints present in oct1 that are not in oct2 (i.e. {i | e′i <
0.5 ∧ ei = 1}). In most cases, a smaller number of inequalities means that the
octagon covers a larger area.

(b) Cases where the inequality constants are larger in oct2. As the inequalities are of ≤
form, a higher inequality constant means that the inequality satisfies more number of
points.
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Figure 10: The dotted lines show the inequalities the point does not satisfy. The distance in red
shows the D(c, oct).

The two metrics above can be combined to define L′
P ([w, e], [w

′, e′]) as:

k1 ∗BCELoss(e′i, ei | ei = 1) + k2 ∗
∑
i

(max(w′
i − wi, 0)) (22)

Here, k1 and k2 are constants and can be chosen appropriately. BCELoss(e′i, ei | ei = 1)
means that the BinaryCrossEntropy loss is only computed for inequality i if ei = 1, i.e. it is
present in the first octagon. Minimizing L′

P (oct1, oct2) guides the model towards octagons
oct2 which are relatively similar to the size of octagons oct1 by adding inequalities not
present in oct2 (but present in oct1) and decreasing inequality constants in oct2.

C.2.3 UNSUPERVISED LEARNING OF NEURAL OCTAGON TRANSFORMERS

The general unsupervised learning approach described in Section 2.2 can be used to learn neural
transformer for the Octagon domain by using the following instantiations of the loss components
present in Eq. 3:

1. L′′
S(op, oct1, oct2): As described above, L′′

S depends on the definitions of D(c, a) and
MVCP (op, a1, a2), where c is some element in the concrete domain C and a1, a2 belong
to the abstract domain A.
For the Octagon domain, we will first define D(c, oct). For the octagon oct = [w, e], let
vi(c) be the value of the ith possible inequality expression on the point c. For instance, if
the ith inequality is on x+y and we have c = {x : 2, y : 3}, vi(c) = 5. We then collect the
set of inequalities of oct not satisfied as c, which is given by the set of indices δ(c, [w, e])
defined as:

δ(c, [w, e]) = {i | ei = 1 ∧ vi(c) > wi} (23)

We define D(c, oct) as the maximum of the distances of c from the inequalities that c does
not satisfy (given by δ(c, [w, e])), i.e.

D(c, [w, e]) = max
i∈δ(c,[w,e])

vi(c)− wi (24)

Thus, D(c, oct) measures the distance of c from the inequality that is most-violated. Note
that D(c, oct) is defined to be 0 if c ∈ oct. Once D(c, oct) is defined, we need to find
the MVCP . As discussed earlier, MVCP s are computed by encoding the MVCP con-
straints into SMT solvers. Before discussing the query used to find the MVCP s, we first
define encode(oct, [v1, v2, . . . vn]) as the encoding on a n variable octagon using symbolic
variables v1, v2, . . . vn. This can be done easily by asserting the inequalities in the octagon
oct on the specified variables. For example, say the octagon is {x+ y ≥ 20, x < 2}. This
can be encoded using symbolic variables [v1, v2] as (v1 + v2 ≥ 20 ∧ v1 < 2).
Now, consider the case of octagons with 2 variables and the affine assignment operator that
finds the new octagon as a result of the statement x = a∗x+b∗y. MVCP (op, oct1, oct2)
for this operator (affine assignment) can be computed using:
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argmax
c

D(c, oct2)

subject to ∃v1, v2. encode(oct1, [v1, v2]) ∧ c = (a ∗ v1 + b ∗ v2, v2)
(25)

Here, encode(oct1, [v1, v2]) encodes that v1 and v2 belong to the octagon oct1. Under this
condition, we find the point c = (a ∗ v1 + b ∗ v2, v2) that should be in the resultant octagon
(after the affine operation) but is the farthest from oct2.
Similarly, MVCP (join, (oct1, oct2), (octo)) for octagon join (3 variables octagons) can
be computed using:

argmax
(v1,v2,v3)

D([v1, v2, v3], octo)

subject to encode(oct1, [v1, v2, v3]) ∨ encode(oct2, [v1, v2, v3])
(26)

In this case, we try to find the concrete point farthest from octo that is present in at least
one of oct1 or oct2 (and so should be in the join).
L′′
S(op, oct1, oct2) can be then implemented using the MVCP s and D defined above

using the formulation in Eq. 5. Reducing the distance D of the MVCP s from the model’s
output oct2 guides the model towards sound transformers.

2. L′′
P (oct): L′′

P (oct) ensures that the learned octagons are smaller in size and thus enforce
precision. For this, L′′

P (oct) should return a differentiable approximation of some measure
M of the size of the octagon. However, as discussed earlier, defining such a measure for
octagons (which are polytopes and can also be unbounded) is not trivial. Instead, we rely
on these two metrics to approximate the size of an octagon:
(a) Number of inequalities in the octagon: If an octagon has fewer inequalities, it usually

means that it covers a large area. Thus, it makes sense to enforce that the produced
octagons have as many inequalities as possible to enforce precision.

(b) Inequality constants of the inequalities present: If the inequality constants of the in-
equalities in the octagon are higher, it usually means that it covers a larger area (as
the inequalities are of ≤ type). Thus, it makes sense to enforce that the inequality
constants in the octagons are smaller in value.

The above two metrics can be combined to define L′′
P ([w, e]]) as follows:

k1 ∗BCELoss(ei, 1 | ei < 0.5) + k2 ∗
∑

i | ei ≥ 0.5

wi (27)

Here, k1 and k2 are constants and can be chosen appropriately. BCELoss(e, 1 | e <
0.5) means that the BinaryCrossEntropy loss should be used only for inequalities i not
present in the octagon (ei < 0.5). This guides the model towards learning octagons with
more inequalities by pushing eis, which are less than 0.5, towards 1. The second term∑

i | ei ≥ 0.5 wi denotes the sum of inequality constants of those inequalities which are
present in the octagon (ei ≥ 0.5). This term guides the model towards learning octagons
with smaller inequality constants. These two components together allow L′′

P ([w, e]]) to
enforce precision and guide the model towards smaller octagons.
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