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1 PROBLEM AND MOTIVATION
Abstract Interpretation [3] is a popular technique for formally ana-
lyzing the properties of programs [4, 5], neural networks [10, 21],
and complex real-world systems [8] by soundly approximating
their concrete semantics in an abstract domain. However, designing
efficient abstract transformers for expressive relational domains
such as Octagon [16] and Polyhedra [6] is hard as one needs to
carefully balance the fundamental tradeoff between the cost, sound-
ness, and the precision of the transformer for downstream task [16].
Further, scalable implementations involve intricate performance
optimizations [22, 23]. We propose a data-driven learning approach
to generate efficient abstract transformers to ease development
costs. Given the inherent complexity of abstract transformers and
the proven capability of neural networks to effectively approximate
complex functions [7, 12], we envision and propose the Neural
Abstract Interpretation (NeurAbs) framework (Section 3) to learn
neural abstract transformers: neural networks that serve as the
abstract transformers. These neural transformers can then act as
a fast and sometimes even more precise replacement for slow and
imprecise hand-crafted transformers. Additionally, these neural
transformers are differentiable as opposed to the hand-crafted ones,
enabling their use with gradient-guided learning methods, which
can be beneficial for tasks that can be posed as learning problems
(like invariant generation).

In Section 4, we illustrate how NeurAbs facilitates data-driven
learning of various neural transformers for octagon join, achieving
different levels of soundness and precision by fine-tuning the frame-
work’s inputs. We also highlight the benefits of the differentiability
of these neural transformers by framing the search for octagon
invariants in a loop program as a differentiable optimization task.

2 BACKGROUND AND RELATEDWORKS
Abstract transformer corresponding to an operation 𝑜𝑝 in the con-
crete domain (C) is a function 𝑓𝑜𝑝 : A → A that captures the effect
of applying 𝑜𝑝 to concrete states corresponding to an abstract state
in A. 𝑓𝑜𝑝 is sound if it over-approximates the output of 𝑜𝑝 , i.e.
∀𝑎 ∈ A . 𝑜𝑝 (𝛾 (𝑎)) ⊑𝐶 𝛾 (𝑓𝑜𝑝 (𝑎)) where 𝛾 : A → C is the con-
cretization function. The precision of 𝑓𝑜𝑝 is essentially indicative of
the degree of over-approximation due to 𝑓𝑜𝑝 and can be quantified
by some measure of the size of the abstract element computed by
𝑓𝑜𝑝 . Precision is important as any abstract transformer that returns
⊤ is technically sound but is not very useful for practical settings.
We ideally need sound transformers that are as precise as possible.

2.1 Related Works
Learning Abstract Transformers. Works like [13, 14] have been
proposed to synthesize abstract transformers automatically. These
expect the concrete domain and semantics as inputs and use sym-
bolic methods to find exact abstract transformers. In contrast, our

NeurAbs framework proposes a data-driven approach to learning
neural transformers with varying soundness and precision. [2] uses
a data-driven, counter-example guided learning method to learn
static analyzers, but the learned static analyzers are symbolic and
not differentiable. [11] uses a data-driven approach to learn a neural
policy that allows it to remove redundant constraints from abstract
states to achieve order of magnitude speedups, but it does not use
neural networks to replace the hand-crafted transformers.

Neural Surrogates. In recent years, significant advancements
have been made in developing and applying neural surrogates for
programs [9, 19], focusing on their potential to speed up program
execution [15, 17] and estimate program gradients [18, 20]. Our
framework NeurAbs lifts this idea from concrete programs to ab-
stract programs. The idea is that the learned neural abstract trans-
formers for each program operation can be composed to obtain a
neural surrogate of the abstract program.

3 APPROACH AND UNIQUENESS
The NeurAbs framework combines a supervised learning approach
with a specialized loss function to fine-tune and balance the soundness-
precision tradeoff while learning the neural abstract transformers.
The general problem of learning abstract transformers that are si-
multaneously sound and precise is notably difficult. For instance,
consider the task of learning the sound and most-precise octagon
abstract transformer 𝑓𝑜𝑝 from a set of functions F for an opera-
tor 𝑜𝑝 . As defined in [3], we represent the “most-precise abstract
transformer" for 𝑜𝑝 as 𝑓 #𝑜𝑝 . [3] just provides a specification for 𝑓 #𝑜𝑝 ,
and in general, there is no way to compute it. Our 𝑓𝑜𝑝 should be
such that its output is sound for all possible inputs in the abstract
domain, and the output is as close to 𝑓 #𝑜𝑝 . The optimization problem
thus becomes:

min
𝑓 ∈F

∑︁
𝑎∈A

L𝑃 (𝑓 #𝑜𝑝 (𝑎), 𝑓 (𝑎)) s.t.
∑︁
𝑎∈A

L𝑆 (𝑎, 𝑓 (𝑎)) = 0 (1)

whereL𝑆 (𝑎, 𝑓 (𝑎)) is 0 if 𝑓 (𝑎) is a sound approximation of the effect
𝑜𝑝 on 𝑎, i.e 𝑜𝑝 (𝛾 (𝑎)) ⊑𝐶 𝛾 (𝑓 (𝑎)) and 1 otherwise and L𝑃 (𝑜1, 𝑜2)
can be anymetric tomeasure how “big" is𝑜2 compared to𝑜1. Solving
this optimization problem is complex due to the following reasons:

(1) The set A of all possible abstract elements has infinite size.
(2) As discussed above, there is no way to compute 𝑓 #𝑜𝑝 in

general, and thus computing L𝑃 is not trivial.
(3) Computing L𝑆 is usually done by finding counter-example

𝑒 to soundness such that 𝑜𝑝 (𝛾 (𝑒)) @𝐶 𝛾 (𝑓 (𝑒)). This is done
by encoding this condition, along with the semantics of 𝑜𝑝
and𝛾 in SMT [1], and then using an SMT solver. This makes
computing L𝑆 expensive and makes the use of gradient-
guided learning methods to solve the optimization problem
infeasible due to the non-differentiability of such solvers.

To overcome the above challenges and make the learning prob-
lem feasible, we propose a supervised approach for learning

1



Shaurya Gomber

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

abstract transformers as a relaxation of the above problem. To
the best of our knowledge, we are the first work to propose such
relaxation, thus enabling the learning and use of neural abstract
transformers. Given a dataset D = {𝑋𝑖 , 𝑦𝑖 } representing input-
output of an abstract transformer 𝑓 in the octagon domain, we pose
the learning of the neural abstract transformer 𝑓 ∗ as the following
optimization problem:

min
𝜃
E(𝑋,𝑦)∼𝐷 [𝛼 ∗ L𝑆 (𝑦, 𝑓 ∗ (𝑥 ;𝜃 )) + 𝛽 ∗ L𝑃 (𝑦, 𝑓 ∗ (𝑥 ;𝜃 ))] (2)

where if octagon 𝑜1 is represented by the constraints ±𝑣𝑖 ± 𝑣 𝑗 ≤ 𝑐𝑖 𝑗
and if the octagon 𝑜2 is represented by the constraints±𝑣𝑖±𝑣 𝑗 ≤ 𝑐′

𝑖 𝑗
,

then:
(1) L𝑆 (𝑜1, 𝑜2) =

∑
𝑖, 𝑗 𝑖𝑡𝑒 (𝑐𝑖 𝑗 − 𝑐′

𝑖 𝑗
> 0, 𝑐𝑖 𝑗 − 𝑐′

𝑖 𝑗
, 0) is the sum

of difference of inequality constants of 𝑜1 and 𝑜2 for all
𝑖, 𝑗 where 𝑐𝑖 𝑗 > 𝑐′

𝑖 𝑗
. This forces the 𝑐′

𝑖 𝑗
s to be greater than

𝑐𝑖 𝑗 s and thus enforces soundness as this ensures that the
output produced by the model is an over-approximation of
the ground truth.

(2) L𝑃 (𝑜1, 𝑜2) =
∑
𝑖, 𝑗 |𝑐𝑖 𝑗 − 𝑐′

𝑖 𝑗
| is the sum of absolute differ-

ences of the corresponding inequality constants, which
forces the output octagon constants to be as close as the
ground truth and thus enforce precision.

(3) 𝛼, 𝛽 are the soundness and precision weights, respectively,
and let us control the degree of soundness and precision
required for the transformer.

Soundness-Precision tradeoff.Note that solely having a sound-
ness loss can guide themodel to generate octagons with exceedingly
high (approaching infinity) inequality constants. While this main-
tains soundness, it lacks precision. Conversely, exclusively incorpo-
rating precision loss may result in octagons with constants almost
identical to the desired output but slightly less, thereby impacting
soundness. By appropriately tuning the values of 𝛼 and 𝛽 , we can
achieve neural transformers with varying degrees of soundness and
precision. In settings such as verification, where soundness is very
important, we can always resort to hand-crafted transformers’ out-
puts if the output of the neural transformer is unsound (checking
the soundness of an output is comparably simpler).

4 RESULTS AND CONTRIBUTIONS
4.1 Neural Octagon Transformers
We use the NeurAbs framework to train neural transformers for
various octagon abstract transformers like join, meet, affine etc.
We randomly generate octagons (with 3 variables) to compute the
training and testing sets. For real-world use cases, these datasets
can be sampled from the programs being analyzed. Table 1 shows
the soundness and precision results for the trained transformer
for octagon join. Soundness (%) denotes the percentage of sound
outputs generated when the transformer is run on a test dataset
of 1000 octagons. The imprecision measure is the average differ-
ence between the inequality constants of the model’s output and
the ground truth. As expected, increasing the soundness weight
guides the model to learn more sound transformers, but this makes
the model less precise. This shows the effectiveness of our frame-
work in learning multiple neural transformers for the same abstract
transformer with varying soundness and precision.

Soundness Precision Soundness Imprecision
Weight (𝛼) Weight (𝛽) Measure (%) Measure
1 1 9.6 49.96
10 1 36.6 85.30
20 1 49.0 110.51
50 1 64.5 129.26
100 1 79.0 184.58
250 1 86.3 291.23

Table 1: Soundness and Precision of Neural Octagon Join

4.2 Differentiable Learning of Loop Invariants
In this section, we highlight the advantages of our neural abstract
transformers being differentiable by employing them in learning
loop invariants. We frame this task of finding valid inductive octag-
onal invariants for a loop program P as a learning problem. Let’s
consider a typical loop program P = while(𝛽) do C od.
Let 𝑓C = 𝑓𝑛 ◦ 𝑓𝑛−1 ...◦ 𝑓1 represent the effective abstract transformer
for C where 𝑓𝑖 represents the abstract transformer for 𝑠𝑡𝑚𝑡𝑖 in C.
If 𝑂𝑖𝑛𝑖𝑡 approximates the initial states (init) of P, then the octagon
𝑂𝑖𝑛𝑣 is a valid octagonal invariant of the program if it satisfies:

(𝑂𝑖𝑛𝑖𝑡 ∈ 𝑂𝑖𝑛𝑣) ∧ (𝑓C (𝑓𝑐𝑜𝑛𝑗 (𝑂𝑖𝑛𝑣, 𝛽)) ∈ 𝑂𝑖𝑛𝑣) (3)

where 𝑓𝑐𝑜𝑛𝑗 represents the abstract transformer for taking the con-
junction of an octagon with a condition like 𝛽 and so 𝑓𝑐𝑜𝑛𝑗 (𝑂𝑖𝑛𝑣, 𝛽)
is an approximation for points in 𝑂𝑖𝑛𝑣 that satisfy 𝛽 .

Now, using the NeurAbs framework, we can derive the neural
approximation 𝑓 ∗

𝑖
for each transformer 𝑓𝑖 . These neural transform-

ers can then be composed to get the effective neural transformer for
the loop body (𝑓 ∗C ) as 𝑓

∗
C = 𝑓 ∗𝑛 ◦ 𝑓 ∗

𝑛−1 ... ◦ 𝑓 ∗1 . Exploiting the differ-
entiability of 𝑓 ∗C , we can now pose the search for a valid octagonal
invariant 𝑂𝑖𝑛𝑣 as the following optimization problem:

min
𝑜∈O

L𝑆 (𝑂𝑖𝑛𝑖𝑡 , 𝑜) + L𝑆 (𝑓 ∗C (𝑓
∗
𝑐𝑜𝑛𝑗 (𝑜, 𝐵)), 𝑜) (4)

where O represents all possible octagons, 𝑓 ∗
𝑐𝑜𝑛𝑗

represents the
neural transformer for conjunction, and as described above,L𝑆 (𝑜1, 𝑜2)
measures if 𝑜2 is a sound approximation of 𝑜1 (𝑜1 ∈ 𝑜2). Starting
with random octagons, we can now apply gradient descent guided
by the loss described in Eq. 4 to find candidate octagon invariants,
which can then be validated by verifying the correctness constraints
described in Eq. 3 using an SMT solver.

As a concrete example, consider the following loop program:
x = 100; y = 150;

while (y <= 600) {

x = x + y;

y = 2*y;

}

Using a neural transformer trained for affine assignment in the
octagon domain, the above method synthesizes non-trivial valid
octagonal invariants like {𝑦 >= 65.514, 𝑥−𝑦 <= −49.951,−𝑥−𝑦 <=

74.897} and {𝑥 − 𝑦 <= 13.239} for this program. More precise
invariants can be learned through better initialization strategies
and by integrating the learned octagon’s precision into the learning
goal. However, this example highlights the effectiveness of our
neural transformers in a practical setting of finding invariants.
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